python运用sklearn实现KNN分类算法

yipeiwu_com5年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 实现Windows开机运行某软件的方法

Python 实现Windows开机运行某软件的方法

开机运行:随系统启动的应用程序,当系统启动之后会自动加载的应用 在注册表中添加启动项便可实现开机启动。 代码如下: # -*- coding:utf-8 -*- import win...

对python多线程中互斥锁Threading.Lock的简单应用详解

对python多线程中互斥锁Threading.Lock的简单应用详解

一、线程共享进程资源 每个线程互相独立,相互之间没有任何关系,但是在同一个进程中的资源,线程是共享的,如果不进行资源的合理分配,对数据造成破坏,使得线程运行的结果不可预期。这种现象称为“...

Django框架模板用法入门教程

本文实例讲述了Django框架模板用法。分享给大家供大家参考,具体如下: Django 模板标签 if/else 标签 基本语法格式如下: {% if condition %}...

Centos5.x下升级python到python2.7版本教程

首先到官网下载python2.7.3版本,编译安装 复制代码 代码如下: $wget http://www.python.org/ftp/python/2.7.3/Python-2.7....

详解python单元测试框架unittest

一:unittest是python自带的一个单元测试框架,类似于java的junit,基本结构是类似的。 基本用法如下: 1.用import unittest导入unittest模块...