python分布式编程实现过程解析

yipeiwu_com5年前Python基础

分布式编程的难点在于:

1.服务器之间的通信,主节点如何了解从节点的执行进度,并在从节点之间进行负载均衡和任务调度;

2.如何让多个服务器上的进程访问同一资源的不同部分进行执行

第一部分涉及到网络编程的底层细节

第二个问题让我联想到hdfs的一些功能。

首先分布式进程还是解决的是单机单进程无法处理的大数据量大计算量的问题,希望能加通过一份代码(最多主+从两份)来并行执行一个大任务。

这就面临两个问题,首先将程序分布到多台服务器,其次将输入数据分配给多台服务器。

第一个问题相对比较简单,毕竟程序一般不会太长,即便是超级jar包的spark程序,也不过百兆。

但数据里不同,如今企业级别的数据动辄GB、TB,如果在分布式程序执行之前首先要进行大容量数据的转移,显然是不可取的。

这时候我们就需要一个中央共享数据源,所有服务器都可以对这个数据源进行并行存取(块block),这就已经非常接近hdfs的功能。

因为在hdfs中,集群中的多台服务器共享同一个hdfs,每台机器访问hdfs就像访问本地数据一样(还是稍微慢一点);

计算任务执行完之后,每台服务器还可以将自己的计算结果写回hdfs,每台服务器的结果被存储成了结果目录中的小文件。

# task_master.py

import random, time, queue
from multiprocessing.managers import BaseManager

# 发送任务的队列:
task_queue = queue.Queue()
# 接收结果的队列:
result_queue = queue.Queue()

# 从BaseManager继承的QueueManager:
class QueueManager(BaseManager):
  pass

# 把两个Queue都注册到网络上, callable参数关联了Queue对象:
QueueManager.register('get_task_queue', callable=lambda: task_queue)
QueueManager.register('get_result_queue', callable=lambda: result_queue)
# 绑定端口5000, 设置验证码'abc':
manager = QueueManager(address=('', 5000), authkey=b'abc')
# 启动Queue:
manager.start()
# 获得通过网络访问的Queue对象:
task = manager.get_task_queue()
result = manager.get_result_queue()
# 放几个任务进去:
for i in range(10):
  n = random.randint(0, 10000)
  print('Put task %d...' % n)
  task.put(n)
# 从result队列读取结果:
print('Try get results...')
for i in range(10):
  r = result.get(timeout=10)
  print('Result: %s' % r)
# 关闭:
manager.shutdown()
print('master exit.')
# task_worker.py

import time, sys, queue
from multiprocessing.managers import BaseManager

# 创建类似的QueueManager:
class QueueManager(BaseManager):
  pass

# 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字:
QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')

# 连接到服务器,也就是运行task_master.py的机器:
server_addr = '127.0.0.1'
print('Connect to server %s...' % server_addr)
# 端口和验证码注意保持与task_master.py设置的完全一致:
m = QueueManager(address=(server_addr, 5000), authkey=b'abc')
# 从网络连接:
m.connect()
# 获取Queue的对象:
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,并把结果写入result队列:
for i in range(10):
  try:
    n = task.get(timeout=1)
    print('run task %d * %d...' % (n, n))
    r = '%d * %d = %d' % (n, n, n*n)
    time.sleep(1)
    result.put(r)
  except Queue.Empty:
    print('task queue is empty.')
# 处理结束:
print('worker exit.')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的计算马氏距离算法示例

Python实现的计算马氏距离算法示例

本文实例讲述了Python实现的计算马氏距离算法。分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码: # encoding: utf-8 fro...

在Mac OS系统上安装Python的Pillow库的教程

今天帮朋友做个python的小工具,发现系统上缺少ptyhon的支持库,返回如下信息 ImportError: No module named PIL  然后就下载安装,因为...

跟老齐学Python之dict()的操作方法

dict的很多方法跟list有类似的地方,下面一一道来,并且会跟list做一个对比 嵌套 嵌套在list中也存在,就是元素是list,在dict中,也有类似的样式: >>...

python 筛选数据集中列中value长度大于20的数据集方法

如果我有一个数据集,他的某个列名下面的value很长,我们需要筛选出,所有列名中value值字符串大于20的数据集。 其实比较简单啦,一句代码就可以搞定 #对该列进行强制的字符类型转...

Python简单定义与使用二叉树示例

本文实例讲述了Python简单定义与使用二叉树的方法。分享给大家供大家参考,具体如下: class BinaryTree: def __init__(self,rootObj):...