给Python入门者的一些编程建议

yipeiwu_com5年前Python基础

Python是一种非常富有表现力的语言。它为我们提供了一个庞大的标准库和许多内置模块,帮助我们快速完成工作。然而,许多人可能会迷失在它提供的功能中,不能充分利用标准库,过度重视单行脚本,以及误解Python基本结构等。本文是一个关于Python新手可能会陷入的一些陷阱的不完全列表。

不知道Python版本

这是一个在StackOverflow上反复出现的问题。许多人能写出在某个版本上完美工作的代码,但在他们在自己的系统上安装有不同版本的Python。要确保你知道你正在使用的Python版本。

你可以通过下边的代码查看Python版本:
 

$ python --version
Python 2.7.9

不使用版本管理器

pyenv是一个极好的管理不同Python版本的工具,但很不幸,它只工作在*nix系统上。在Mac系统上,你可以简单地通过brew install pyenv安装它,在Linux上,也有一个自动安装程序。

沉迷于一行程序

许多人热衷于一行程序带来的兴奋感。即使他们的一行解决方案比一个多行解决方案低效,他们也会吹嘘。

Python中的一行程序在本质上意味着具有多个表达式的复杂推导。例如:
 

l = [m for a, b in zip(this, that) if b.method(a) != b for m in b if not m.method(a, b) and reduce(lambda x, y: a + y.method(), (m, a, b))]

老实讲,我编造了上面的例子。但我看到很多人都写类似的代码。这样的代码在一个星期后就会变得难以理解。如果你想做一些稍微复杂的事情,例如根据条件简单地在一个列表或集合中添加一个元素,你可能就会犯错误。

单行代码并不是什么成就,是的,他们可能看起来很灵活,但不是什么成就。想象一下,这就像是你在打扫房间时把所有的东西都塞进你的衣橱。好的代码应该是干净的,易于阅读的和高效的。

利用错误的方式初始化一个集合

这是一个更微妙的问题,可能让你措手不及。集合推导很像列表推导。
 

>>> { n for n in range(10) if n % 2 == 0 }
{0, 8, 2, 4, 6}
>>> type({ n for n in range(10) if n % 2 == 0 })

上面就是集合推导的一个例子。集合就像列表,也是一个容器。所不同的是,一个集合中不能有任何重复的值,而且是无序的。看到集合推导人们经常错误地认为{}能初始化一个空集合。但其实不然,它初始化一个空字典。
 

>>> {}
{}
>>> type({})

如果你想初始化一个空集合,可以简单地调用set()方法。
 

>>> set()
set()
>>> type(set())

注意一个空集合用set()表示,但是一个包含一些元素的集合就就要用花括号包围元素来表示。
 

>>> s = set()
>>> s
set()
>>> s.add(1)
>>> s
{1}
>>> s.add(2)
>>> s
{1, 2}

这和直觉是相反的,因为你期望类似于set([1, 2])的一些东西。

误解GIL

GIL(全局解释器锁)意味着在Python程序中,任意一个时间点只能有一个线程在运行。这意味着当我们创建一个线程并希望它并行运行时,它并不会那样。Python解释器实际的工作是在不同的运行线程之间快速进行切换。但这只是对实际发生事情的一个非常简单的解释,实际情况要复杂的多。有很多种并行运行的实例,例如使用本质为C扩展的各种库。但运行Python代码时,大部分时间里它不会并行执行。换句话说,Python中的线程并不像Java或C++中的线程。

许多人会尝试为Python辩解,说这些都是真正的线程。这确实是真的,但并不能改变这样一个事实:Python处理线程的方式和你期望的方式是不同的。Ruby语言也有相同的情况(Ruby也有一个解释器锁)。

指定的解决方案是使用multiprocessing模块。multiprocessing模块提供Process类,它是一个对fork的很好的覆盖。然而,fork过程比一个线程的代价高得多,所以你可能不会每次都能看到性能上的提升,因为不同的process之间需要做大量的工作来进行相互协调。

然而,这个问题并不存在于每一个Python的实现版本中。例如,Python的一个实现PyPy-stm就试图摆脱GIL(仍未稳定)。建立在其他平台,如JVM(Jython)或CLR(IronPython),上的Python实现,也没有GIL的问题。

总之,使用Thread类时要多加小心,你得到的可能不是你想要的。

使用老式类

在Python 2中,有两种类型的类,分别为“老式”类和“新式”类。如果你使用Python 3,那么你默认使用“新式”类。为了确保在Python2中使用“新式”类,你需要让你新创建的每一个类都继承object类,且类不能已继承了内置类型,例如int或list。换句话说,你的基类、类如果不继承其他类,就总是需要继承object类。
 

class MyNewObject(object):
# stuff here

这些“新式”类解决一些老式类的根本缺陷,这一点我们不需要深入了解。然而,如果有人感兴趣,他们可以在相关文档中找到相关信息。

按错误的方式迭代

对于这门语言的新手来说,下边的代码是非常常见的:
 

for name_index in range(len(names)):
print(names[name_index])

在上边的例子中,没有必须调用len函数,因为列表迭代实际上要简单得多:
 

for name in names:
print(name)

此外,还有一大堆其他的工具帮助你简化迭代。例如,可以使用zip同时遍历两个列表:
 

for cat, dog in zip(cats, dogs):
print(cat, dog)

如果你想同时考虑列表变量的索引和值,可以使用enumerate:
 

for index, cat in enumerate(cats):
print(cat, index)

在itertools中也有很多有用的函数供你选择。然而请注意,使用itertools函数并不总是正确的选择。如果itertools中的一个函数为你试图解决的问题提供了一个非常方便的解决办法,例如铺平一个列表或根据给定的列表创建一个其内容的排列,那就用它吧。但是不要仅仅因为你想要它而去适应你代码的一部分。

滥用itertools引发的问题出现的过于频繁,以至于在StackOverflow上一个德高望重的Python贡献者已经贡献他们资料的重要组成部分来解决这些问题。

使用可变的默认参数

我多次见到过如下的代码:
 

def foo(a, b, c=[]):
# append to c
# do some more stuff

永远不要使用可变的默认参数,可以使用如下的代码代替:
 

def foo(a, b, c=None):
if c is None:
c = []
# append to c
# do some more stuff

与其解释这个问题是什么,不如展示下使用可变默认参数的影响:
 

In[2]: def foo(a, b, c=[]):
... c.append(a)
... c.append(b)
... print(c)
...
In[3]: foo(1, 1)
[1, 1]
In[4]: foo(1, 1)
[1, 1, 1, 1]
In[5]: foo(1, 1)
[1, 1, 1, 1, 1, 1]

同一个变量c在函数调用的每一次都被反复引用。这可能有一些意想不到的后果。

总结

这些只是相对来说刚接触Python的人可能会遇到的一些问题。然而请注意,可能会遇到的问题远非就这么些。然而另一些缺陷是人们像使用Java或C++一样使用Python,并且试图按他们熟悉的方式使用Python。所以作为本篇文章的一个延续,尝试深入一些东西,例如Python的super函数。看看类方法、静态方法和 __slots__等。

相关文章

详解Python进程间通信之命名管道

管道是一种简单的FIFO通信信道,它是单向通信的。 通常启动进程创建一个管道,然后这个进程创建一个或者多个进程子进程接受管道信息,由于管道是单向通信,所以经常需要创建两个管道来实现双向通...

Python中使用装饰器来优化尾递归的示例

尾递归简介 尾递归是函数返回最后一个操作是递归调用,则该函数是尾递归。 递归是线性的比如factorial函数每一次调用都会创建一个新的栈(last-in-first-out)通过不断的...

浅谈python连续赋值可能引发的错误

今天写的代码片段: X = Y = [] .. X.append(x) Y.append(y) 其中x和y是读取的每一个数据的xy值,打算将其归入列表之后绘散点图,但是绘图出来却是...

Django Rest framework解析器和渲染器详解

Django Rest framework解析器和渲染器详解

解析器 解析器的作用就是服务端接收客户端传过来的数据,把数据解析成自己想要的数据类型的过程. 本质就是对请求体中的数据进行解析. Content-type:用于声明我给你传的是什么类型...

使用python判断你是青少年还是老年人

今天来给大家讲讲python中最基本的 if 条件语句,这几乎是所有编程语言中都存在的语句,只是语法结构稍有不同。 程序之所以能自动处理很多的事情,if条件语句在这里...