Python使用lxml模块和Requests模块抓取HTML页面的教程

yipeiwu_com6年前Python爬虫

Web抓取
Web站点使用HTML描述,这意味着每个web页面是一个结构化的文档。有时从中 获取数据同时保持它的结构是有用的。web站点不总是以容易处理的格式, 如 csv 或者 json 提供它们的数据。

这正是web抓取出场的时机。Web抓取是使用计算机程序将web页面数据进行收集 并整理成所需格式,同时保存其结构的实践。

lxml和Requests
lxml(http://lxml.de/)是一个优美的扩展库,用来快速解析XML以及HTML文档 即使所处理的标签非常混乱。我们也将使用 Requests (http://docs.python-requests.org/en/latest/#)模块取代内建的urllib2模块,因为其速度更快而且可读性更好。你可以通过使用 pip install lxml 与 pip install requests 命令来安装这两个模块。

让我们以下面的导入开始:

from lxml import html
import requests

下一步我们将使用 requests.get 来从web页面中取得我们的数据, 通过使用 html 模块解析它,并将结果保存到 tree 中。

page = requests.get('http://econpy.pythonanywhere.com/ex/001.html')
tree = html.fromstring(page.text)

tree 现在包含了整个HTML文件到一个优雅的树结构中,我们可以使用两种 方法访问:XPath以及CSS选择器。在这个例子中,我们将选择前者。

XPath是一种在结构化文档(如HTML或XML)中定位信息的方式。一个关于XPath的 不错的介绍参见 W3Schools 。

有很多工具可以获取元素的XPath,如Firefox的FireBug或者Chrome的Inspector。 如果你使用Chrome,你可以右键元素,选择 ‘Inspect element',高亮这段代码, 再次右击,并选择 ‘Copy XPath'。

在进行一次快速分析后,我们看到在页面中的数据保存在两个元素中,一个是title是 ‘buyer-name' 的div,另一个class是 ‘item-price' 的span:

<div title="buyer-name">Carson Busses</div>
<span class="item-price">$29.95</span>

知道这个后,我们可以创建正确的XPath查询并且使用lxml的 xpath 函数, 像下面这样:

#这将创建buyers的列表:
buyers = tree.xpath('//div[@title="buyer-name"]/text()')
#这将创建prices的列表:
prices = tree.xpath('//span[@class="item-price"]/text()')

让我们看看我们得到了什么:

print 'Buyers: ', buyers
print 'Prices: ', prices
Buyers: ['Carson Busses', 'Earl E. Byrd', 'Patty Cakes',
'Derri Anne Connecticut', 'Moe Dess', 'Leda Doggslife', 'Dan Druff',
'Al Fresco', 'Ido Hoe', 'Howie Kisses', 'Len Lease', 'Phil Meup',
'Ira Pent', 'Ben D. Rules', 'Ave Sectomy', 'Gary Shattire',
'Bobbi Soks', 'Sheila Takya', 'Rose Tattoo', 'Moe Tell']

Prices: ['$29.95', '$8.37', '$15.26', '$19.25', '$19.25',
'$13.99', '$31.57', '$8.49', '$14.47', '$15.86', '$11.11',
'$15.98', '$16.27', '$7.50', '$50.85', '$14.26', '$5.68',
'$15.00', '$114.07', '$10.09']

恭喜!我们已经成功地通过lxml与Request,从一个web页面中抓取了所有我们想要的 数据。我们将它们以列表的形式存在内存中。现在我们可以对它做各种很酷的事情了: 我们可以使用Python分析它,或者我们可以将之保存为一个文件并向世界分享。

我们可以考虑一些更酷的想法:修改这个脚本来遍历该例数据集中剩余的页面,或者 使用多线程重写这个应用从而提升它的速度。

相关文章

Python爬虫之UserAgent的使用实例

问题: 在Python爬虫的过程中经常要模拟UserAgent, 因此自动生成UserAgent十分有用, 最近看到一个Python库(fake-useragent),可以随机生成各种U...

利用python爬取软考试题之ip自动代理

利用python爬取软考试题之ip自动代理

前言 最近有个软件专业等级考试,以下简称软考,为了更好的复习备考,我打算抓取www.rkpass.cn网上的软考试题。 首先讲述一下我爬取软考试题的故(keng)事(shi)。现在我已经...

python3爬虫怎样构建请求header

python3爬虫怎样构建请求header

写一个爬虫首先就是学会设置请求头header,这样才可以伪装成浏览器。下面小编我就来给大家简单分析一下python3怎样构建一个爬虫的请求头header。 1、python3跟2有了细微...

Python爬虫获取整个站点中的所有外部链接代码示例

Python爬虫获取整个站点中的所有外部链接代码示例

收集所有外部链接的网站爬虫程序流程图 下例是爬取本站python绘制条形图方法代码详解的实例,大家可以参考下。 完整代码: #! /usr/bin/env python #codi...

如何准确判断请求是搜索引擎爬虫(蜘蛛)发出的请求

如何准确判断请求是搜索引擎爬虫(蜘蛛)发出的请求

网站经常会被各种爬虫光顾,有的是搜索引擎爬虫,有的不是,通常情况下这些爬虫都有UserAgent,而我们知道UserAgent是可以伪装的,UserAgent的本质是Http请求头中的一...