Python 性能优化技巧总结

yipeiwu_com5年前Python基础

1.使用测量工具,量化性能才能改进性能,常用的timeitmemory_profiler,此外还有profilecProfilehotshot等,memory_profiler用了psutil,所以不能跟踪cpython的扩展;

2.用C来解决费时的处理,c是效率的代名词,也是python用来解决效率问题的主要途径,甚至有时候我都觉得python是c的完美搭档。常用的是Cython,直接把py代码c化然后又能像使用py包一样使用,其次是ctypes,效率最最高的存在,最后还有CPythoncffi都是屌屌的存在;

3.优化算法,所有语言通病,算法的提升我觉得是在所有提升之上的,但也是最难的,好在现在大部分常用的算法都已经封包,除非自己给自己挖坑,所以弄懂标准库里的数据结构和常用api是如何实现的很重要;

4.2里的实现有人做了更高效的包用以替换python中常见的一些实现,如果瓶颈在stringio、pickle、profile这类上的可以考虑替换为c的版本;

5.数据结构尽量使用元组tuple,特别是数据量大的时候,实在不行list也可以,尽量不要用class,如果一定要用可以加slot,效率再不够就只能结合2来加速了;

6.延迟加载,import不是一定要写在一页的开始,哪里都可以,越碎片越能把包的加载延迟甚至不被加载;

7.用multiprocessing来实现多线程,可以跳出GIL的限制;

8.python处理循环很烂,解释性语言就这样,跟其它编译型语言比就是蜗牛,所以减少循环次数和嵌套次数能显著提升性能,当然了使用pypy就没有这个问题了;

9.使用加速器,很喜欢psyco的使用方式,如果用2.7-的版本那么不失为一个懒人的选择,现在已经不再维护,创始人去了pypy,pypy是用Python实现的python,底层转为平台依赖的c、.net、java的中间语言,方式非常聪明,大爱,但是缺点是库的支持还不完善,我的项目基本都能支持,解决几个小问题即可,如果性能瓶颈在循环和内存上可以试试,最大的好处是不需要更改一句代码和做另外的设置,没有任何侵入。

参考资料:

Python 代码性能优化技巧: https://www.ibm.com/developerworks/cn/linux/l-cn-python-optim/

Python性能优化技巧: http://kuanghy.github.io/2016/09/26/python-optimize

相关文章

从零学python系列之教你如何根据图片生成字符画

从零学python系列之教你如何根据图片生成字符画

说下思路吧: 原图->灰度->根据像素亮度-映射到指定的字符序列中->输出。字符越多,字符变化稠密。效果会更好。如果根据灰度图的像素亮度范围制作字符画,效果会更好。如果...

Vue的el-scrollbar实现自定义滚动

Vue的el-scrollbar实现自定义滚动

为什么要用el-scrollbar? 最近在写一个内部平台系统,相信大家都知道,其中会有很多自定义的滚动区域,就比如说现在有一个列表需要滚动,第一个念头就是用 overflow: sc...

python自动化测试实例解析

本文实例讲述了python自动化测试的过程,分享给大家供大家参考。 具体代码如下: import unittest ##############################...

利用Python如何生成便签图片详解

利用Python如何生成便签图片详解

前言 最近有文字转图片的需求,但是不太想下载 APP,就使用 Python Pillow 实现了一个,效果如下: PIL 提供了 PIL.ImageDraw.ImageDraw.te...

详解Python中for循环是如何工作的

详解Python中for循环是如何工作的

前言 for...in 是Python程序员使用最多的语句,for 循环用于迭代容器对象中的元素,这些对象可以是列表、元组、字典、集合、文件,甚至可以是自定义类或者函数,例如: 作用于列...