python数据抓取分析的示例代码(python + mongodb)

yipeiwu_com5年前Python爬虫

本文介绍了Python数据抓取分析,分享给大家,具体如下:

编程模块:requests,lxml,pymongo,time,BeautifulSoup

首先获取所有产品的分类网址:

def step():
 try:
  headers = {
   。。。。。
   }
  r = requests.get(url,headers,timeout=30)
  html = r.content
  soup = BeautifulSoup(html,"lxml")
  url = soup.find_all(正则表达式)
  for i in url:
   url2 = i.find_all('a')
   for j in url2:
     step1url =url + j['href']
     print step1url
     step2(step1url)
 except Exception,e:
  print e 

我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):

def step2(step1url):
 try:
  headers = {
   。。。。
   }
  r = requests.get(step1url,headers,timeout=30)
  html = r.content
  soup = BeautifulSoup(html,"lxml")
  a = soup.find('div',id='divTbl')
  if a:
   url = soup.find_all('td',class_='S-ITabs')
   for i in url:
    classifyurl = i.find_all('a')
    for j in classifyurl:
      step2url = url + j['href']
      #print step2url
      step3(step2url)
  else:
   postdata(step1url)

当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!

def producturl(url):
 try:
  p1url = doc.xpath(正则表达式)
  for i in xrange(1,len(p1url) + 1):
   p2url = doc.xpath(正则表达式)
   if len(p2url) > 0:
    producturl = url + p2url[0].get('href')
    count = db[table].find({'url':producturl}).count()
    if count <= 0:
      sn = getNewsn()
      db[table].insert({"sn":sn,"url":producturl})
      print str(sn) + 'inserted successfully'
    else:
      'url exist'
 except Exception,e:
  print e

其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。

下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!

其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。

对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!

def parser(sn,url):
 try:
  headers = {
   。。。。。。
   }
  r = requests.get(url, headers=headers,timeout=30)
  html = r.content
  soup = BeautifulSoup(html,"lxml")
  dt = {}
  #partno
  a = soup.find("meta",itemprop="mpn")
  if a:
   dt['partno'] = a['content']
  #manufacturer
  b = soup.find("meta",itemprop="manufacturer")
  if b:
   dt['manufacturer'] = b['content']
  #description
  c = soup.find("span",itemprop="description")
  if c:
   dt['description'] = c.get_text().strip()
  #price
  price = soup.find("table",class_="table table-condensed occalc_pa_table")
  if price:
   cost = {}
   for i in price.find_all('tr'):
    if len(i) > 1:
     td = i.find_all('td')
     key=td[0].get_text().strip().replace(',','')
     val=td[1].get_text().replace(u'\u20ac','').strip()
     if key and val:
      cost[key] = val
   if cost:
    dt['cost'] = cost
    dt['currency'] = 'EUR'
  
  #quantity
  d = soup.find("input",id="ItemQuantity")
  if d:
   dt['quantity'] = d['value']
  #specs
  e = soup.find("div",class_="row parameter-container")
  if e:
   key1 = []
   val1= []
   for k in e.find_all('dt'):
    key = k.get_text().strip().strip('.')
    if key:
     key1.append(key)
   for i in e.find_all('dd'):
    val = i.get_text().strip()
    if val:
     val1.append(val)
   specs = dict(zip(key1,val1))
  if specs:
   dt['specs'] = specs
   print dt   
  if dt:
   db[table].update({'sn':sn},{'$set':dt})
   print str(sn) + ' insert successfully'
   time.sleep(3)
  else:
   error(str(sn) + '\t' + url)
 except Exception,e:
  error(str(sn) + '\t' + url)
  print "Don't data!"

最后全部程序运行,将价值数据分析处理并存入数据库中!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python之多线程爬虫抓取网页图片的示例代码

Python之多线程爬虫抓取网页图片的示例代码

目标 嗯,我们知道搜索或浏览网站时会有很多精美、漂亮的图片。 我们下载的时候,得鼠标一个个下载,而且还翻页。 那么,有没有一种方法,可以使用非人工方式自动识别并下载图片。美美哒。 那么请...

Python3.x爬虫下载网页图片的实例讲解

Python3.x爬虫下载网页图片的实例讲解

一、选取网址进行爬虫 本次我们选取pixabay图片网站 url=https://pixabay.com/ 二、选择图片右键选择查看元素来寻找图片链接的规则 通过查看多个图...

Python爬取智联招聘数据分析师岗位相关信息的方法

Python爬取智联招聘数据分析师岗位相关信息的方法

进入智联招聘官网,在搜索界面输入‘数据分析师',界面跳转,按F12查看网页源码,点击network  选中XHR,然后刷新网页 可以看到一些Ajax请求, 找到画红线的XH...

Python探索之爬取电商售卖信息代码示例

网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。 下面有一个示例代码,分享给大家: #...

python requests库爬取豆瓣电视剧数据并保存到本地详解

python requests库爬取豆瓣电视剧数据并保存到本地详解

首先要做的就是去豆瓣网找对应的接口,这里就不赘述了,谷歌浏览器抓包即可,然后要做的就是分析返回的json数据的结构: https://movie.douban.com/j/search...