python+opencv识别图片中的圆形

yipeiwu_com6年前Python基础

本文实例为大家分享了python+opencv识别图片中足球的方法,供大家参考,具体内容如下

先补充下霍夫圆变换的几个参数知识:

  • dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器。上述文字不好理解的话,来看例子吧。例如,如果dp= 1时,累加器和输入图像具有相同的分辨率。如果dp=2,累加器便有输入图像一半那么大的宽度和高度。
  • minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离。这个参数如果太小的话,多个相邻的圆可能被错误地检测成了一个重合的圆。反之,这个参数设置太大的话,某些圆就不能被检测出来了。
  • param1,有默认值100。它是method设置的检测方法的对应的参数。对当前唯一的方法霍夫梯度法,它表示传递给canny边缘检测算子的高阈值,而低阈值为高阈值的一半。
  • param2,也有默认值100。它是method设置的检测方法的对应的参数。对当前唯一的方法霍夫梯度法,它表示在检测阶段圆心的累加器阈值。它越小的话,就可以检测到更多根本不存在的圆,而它越大的话,能通过检测的圆就更加接近完美的圆形了。
  • minRadius,默认值0,表示圆半径的最小值。
  • maxRadius,也有默认值0,表示圆半径的最大值。

源代码:

# -*- coding: utf-8 -*- 
""" 
Created on Tue Sep 26 23:15:39 2017 
 
@author: tina 
""" 
import cv2 
import numpy as np 
import matplotlib.pyplot as plt 
 
img = cv2.imread('C:\\Users\\tina\\Pictures\\ahh\\ball.jpg') 
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
 
plt.subplot(121),plt.imshow(gray,'gray') 
plt.xticks([]),plt.yticks([]) 
 
circles1 = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,1, 
600,param1=100,param2=30,minRadius=80,maxRadius=97) 
circles = circles1[0,:,:] 
circles = np.uint16(np.around(circles)) 
for i in circles[:]: 
 cv2.circle(img,(i[0],i[1]),i[2],(255,0,0),5) 
 cv2.circle(img,(i[0],i[1]),2,(255,0,255),10) 
 cv2.rectangle(img,(i[0]-i[2],i[1]+i[2]),(i[0]+i[2],i[1]-i[2]),(255,255,0),5) 
  
print("圆心坐标",i[0],i[1]) 
plt.subplot(122),plt.imshow(img) 
plt.xticks([]),plt.yticks([]) 

原图:

识别后效果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python flask框架实现重定向功能示例

本文实例讲述了python flask框架实现重定向功能。分享给大家供大家参考,具体如下: flask 重定向: from flask import * app = Flask(__...

Python的MongoDB模块PyMongo操作方法集锦

开始之前当然要导入模块啦: >>> import pymongo 下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。 建立于MongoCl...

简单了解python的break、continue、pass

简单了解python的break、continue、pass

break break可以用来立即退出循环语句(包括else) continue continue可以用来跳过当次循环 注意:break和continue都是只对离他最近的循环起作...

python装饰器使用方法实例

什么是python的装饰器? 网络上的定义:装饰器就是一函数,用来包装函数的函数,用来修饰原函数,将其重新赋值给原来的标识符,并永久的丧失原函数的引用。 最能说明装饰器的例子如下: 复制...

闭包在python中的应用之translate和maketrans用法详解

相对来说python对字符串的处理是比较高效的,方法也有很多。其中maketrans和translate两个方法被应用的很多,本文就针对这两个方法的用法做一总结整理。 首先让我们先回顾下...