pandas系列之DataFrame 行列数据筛选实例

yipeiwu_com6年前Python基础

一、对DataFrame的认知

DataFrame的本质是行(index)列(column)索引+多列数据。

为了简化理解,我们不妨换个思路…

现实中,为了简化对一件事物的描述,我们会选择几个特征。

例如,从(性别、身高、学历、职业、爱好..)等角度去刻画一个人,这些“角度”即为“特征”。

其中,不同的行表示不同的记录;列代表特征,不同记录因各个特征之间的差异而不同。

DataFrame默认索引是序号(0,1,2…),可以理解成位置索引。一般我们用id标识不同记录,不会改变index。但为了理解不同特征(列)含义,我们往往会重新指定column。

一些简易但不算严谨的理解是:

行列

行 – index – 记录 (一般沿用默认索引)

列 – column – 特征 (自定义索引)

索引

默认索引 – 序号 – 位置 – 方便索引但理解不易

自定义索引 – 特征名称 – 属性 – 便于理解

二、对dataframe进行行列数据筛选

import pandas as pd,numpy as np
from pandas import DataFrame
df = DataFrame(np.arange(20).reshape((4,5)),column = list('abcde'))

1.df[]&df. 选取列数据

df.a 
df[[‘a','b']]

2.df.loc[[index],[colunm]] 通过标签选择数据

不对行进行筛选时,[index]处填 : (不能为空),即df.loc[:,'a']表示选取a列全部数据。

df.loc[0,'a'] 
df.loc[0:1,[‘a','b']] 
df.loc[[0,2],[‘a','c']]

3.df.iloc[[index],[colunm]] 通过位置选择数据

不对行进行筛选时,同df.loc[],即[index]处不能为空。

df.iloc[0,0] 
df.iloc[0:1,1:3] 
df.iloc[[0,2],[1,3]]

4.df.ix[[index],[column]] 通过标签or位置选择数据

df.ix[]混合了标签和位置选择。需要注意的是,[index]和[column]的框内需要指定同一类的选择。
df.ix[[0:1],[‘a',3]]报错

以上这篇pandas系列之DataFrame 行列数据筛选实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于Python __dict__与dir()的区别详解

Python下一切皆对象,每个对象都有多个属性(attribute),Python对属性有一套统一的管理方案。 __dict__与dir()的区别: dir()是一个函数,返回的是lis...

利用Python查看目录中的文件示例详解

前言 我们在日常开发中,经常会遇到一些关于文件的操作,例如,实现查看目录内容的功能。类似Linux下的tree命令。统计目录下指定后缀文件的行数。 功能是将目录下所有的文件路径存入lis...

python检查URL是否正常访问的小技巧

python检查URL是否正常访问的小技巧

今天,项目经理问我一个问题,问我这里有2000个URL要检查是否能正常打开,其实我是拒绝的,我知道因为要写代码了,正好学了点Python,一想,python处理起来容易,就选了pytho...

mac安装scrapy并创建项目的实例讲解

最近刚好在学习python+scrapy的爬虫技术,因为mac是自带python2.7的,所以安装3.5版本有两种方法,一种是升级,一种是额外安装3.5版本。 升级就不用说了,讲讲额外安...

Python对象类型及其运算方法(详解)

Python对象类型及其运算方法(详解)

基本要点: 程序中储存的所有数据都是对象(可变对象:值可以修改 不可变对象:值不可修改) 每个对象都有一个身份、一个类型、一个值 例: >>> a1 = 'abc...