python 读文件,然后转化为矩阵的实例

yipeiwu_com5年前Python基础

代码流程:

1. 从文件中读入数据。

2. 将数据转化成矩阵的形式。

3. 对于矩阵进行处理。

具体的python代码如下:

- 文件路径需要设置正确。

- 字符串处理。

- 字符串数组到 整型数组的转化。( nums = [int(x) for x in nums ])

- 矩阵的构造。(matrix = np.array(nums))

- numpy模块在矩阵处理上很有优势。

列表内容

# -*- coding: utf-8 -*-
import numpy as np
def readFile(path):
 # 打开文件(注意路径)
 f = open(path)
 # 逐行进行处理
 first_ele = True
 for data in f.readlines():
  ## 去掉每行的换行符,"\n"
  data = data.strip('\n')
  ## 按照 空格进行分割。
  nums = data.split(" ")
  ## 添加到 matrix 中。
  if first_ele:
   ### 将字符串转化为整型数据
   nums = [int(x) for x in nums ]
   ### 加入到 matrix 中 。
   matrix = np.array(nums)
   first_ele = False
  else:
   nums = [int(x) for x in nums]
   matrix = np.c_[matrix,nums]
 dealMatrix(matrix)
 f.close()
def dealMatrix(matrix):
 ## 一些基本的处理。
 print "transpose the matrix"
 matrix = matrix.transpose()
 print matrix
 print "matrix trace "
 print np.trace(matrix)
# test.
if __name__ == '__main__':
 readFile("matrix")

其中matrix文件中的内容如下:

0 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1
1
2
3
4

python 构造m* n的矩阵

- 通过列表的方式(数组)进行生成矩阵。

- 该矩阵不适用于稀疏矩阵。(稀疏矩阵不会这样子进行构造)

- 注意:如果数据量特别大的时候,这种方法相当于将矩阵中的东西全部加载到内存中,如果行列达到10000+,最好考虑使用稀疏矩阵。(易出现 MemoryError)

- 稀疏矩阵的运算也应该考虑。

相关代码:

def fixed_matrix(row,col):
 return [[0 for i in range(col)] for j in range(row)]

以上这篇python 读文件,然后转化为矩阵的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用TensorFlow实现简单线性回归模型

使用TensorFlow实现简单线性回归模型

本文使用TensorFlow实现最简单的线性回归模型,供大家参考,具体内容如下 线性拟合y=2.7x+0.6,代码如下: import tensorflow as tf import...

dpn网络的pytorch实现方式

我就废话不多说了,直接上代码吧! import torch import torch.nn as nn import torch.nn.functional as F clas...

python查找第k小元素代码分享

复制代码 代码如下:# -*- coding: utf-8 -*- from random import randintfrom math import ceil, floor def...

详解PANDAS 数据合并与重塑(join/merge篇)

详解PANDAS 数据合并与重塑(join/merge篇)

在上一篇文章中,我整理了pandas在数据合并和重塑中常用到的concat方法的使用说明。在这里,将接着介绍pandas中也常常用到的join 和merge方法 merge pandas...

python numpy数组复制使用实例解析

这篇文章主要介绍了python numpy数组复制使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在使用python时我们...