python+pandas分析nginx日志的实例

yipeiwu_com6年前Python基础

需求

通过分析nginx访问日志,获取每个接口响应时间最大值、最小值、平均值及访问量。

实现原理

将nginx日志uriuriupstream_response_time字段存放到pandas的dataframe中,然后通过分组、数据统计功能实现。

实现

1.准备工作

#创建日志目录,用于存放日志
mkdir /home/test/python/log/log
#创建文件,用于存放从nginx日志中提取的$uri $upstream_response_time字段
touch /home/test/python/log/log.txt
#安装相关模块
conda create -n science numpy scipy matplotlib pandas
#安装生成execl表格的相关模块
pip install xlwt

2.代码实现

#!/usr/local/miniconda2/envs/science/bin/python
#-*- coding: utf-8 -*-
#统计每个接口的响应时间
#请提前创建log.txt并设置logdir
import sys
import os
import pandas as pd
mulu=os.path.dirname(__file__)
#日志文件存放路径
logdir="/home/test/python/log/log"
#存放统计所需的日志相关字段
logfile_format=os.path.join(mulu,"log.txt")
print "read from logfile \n"
for eachfile in os.listdir(logdir):
 logfile=os.path.join(logdir,eachfile)
 with open(logfile, 'r') as fo:
  for line in fo:
   spline=line.split()
   #过滤字段中异常部分
   if spline[6]=="-":
    pass
   elif spline[6]=="GET":
    pass
   elif spline[-1]=="-":
    pass
   else:
    with open(logfile_format, 'a') as fw:
     fw.write(spline[6])
     fw.write('\t')
     fw.write(spline[-1])
     fw.write('\n')
print "output panda"
#将统计的字段读入到dataframe中
reader=pd.read_table(logfile_format,sep='\t',engine='python',names=["interface","reponse_time"] ,header=None,iterator=True)
loop=True
chunksize=10000000
chunks=[]
while loop:
 try:
  chunk=reader.get_chunk(chunksize)
  chunks.append(chunk)
 except StopIteration:
  loop=False
  print "Iteration is stopped."
df=pd.concat(chunks)
#df=df.set_index("interface")
#df=df.drop(["GET","-"])
df_groupd=df.groupby('interface')
df_groupd_max=df_groupd.max()
df_groupd_min= df_groupd.min()
df_groupd_mean= df_groupd.mean()
df_groupd_size= df_groupd.size()
#print df_groupd_max
#print df_groupd_min
#print df_groupd_mean
df_ana=pd.concat([df_groupd_max,df_groupd_min,df_groupd_mean,df_groupd_size],axis=1,keys=["max","min","average","count"])
print "output excel"
df_ana.to_excel("test.xls")

3.打印的表格如下:

要点

1. 日志文件比较大的情况下读取不要用readlines()、readline(),会将日志全部读到内存,导致内存占满。因此在此使用for line in fo迭代的方式,基本不占内存。

2. 读取nginx日志,可以使用pd.read_table(log_file, sep=' ‘, iterator=True),但是此处我们设置的sep无法正常匹配分割,因此先将nginx用split分割,然后再存入pandas。

3. Pandas提供了IO工具可以将大文件分块读取,使用不同分块大小来读取再调用 pandas.concat 连接DataFrame

以上这篇python+pandas分析nginx日志的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 类方法和实例方法(@classmethod),静态方法(@staticmethod)原理与用法分析

Python 类方法和实例方法(@classmethod),静态方法(@staticmethod)原理与用法分析

本文实例讲述了Python 类方法和实例方法(@classmethod),静态方法(@staticmethod)。分享给大家供大家参考,具体如下: demo.py(类方法,@classm...

Python中使用dom模块生成XML文件示例

在Python中解析XML文件也有Dom和Sax两种方式,这里先介绍如何是使用Dom解析XML,这一篇文章是Dom生成XML文件,下一篇文章再继续介绍Dom解析XML文件。 在生成XML...

pytorch 状态字典:state_dict使用详解

pytorch 中的 state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系.(如model的每一层的weights及偏置等等) (注意,只有那些参...

详谈Pandas中iloc和loc以及ix的区别

Pandas库中有iloc和loc以及ix可以用来索引数据,抽取数据。但是方法一多也容易造成混淆。下面将一一来结合代码说清其中的区别。 1. iloc和loc的区别: iloc主要使用数...

Python将8位的图片转为24位的图片实现方法

Python将8位的图片转为24位的图片实现方法

用的pytorch来训练deeplabv3+ 在做deeplabv3+的过程中,我的训练图片是8位的,如下图: 8位的: 24位的: 这样虽然在训练过程中能够正常训练。但是在评估过程...