spark: RDD与DataFrame之间的相互转换方法

yipeiwu_com6年前Python基础

DataFrame是一个组织成命名列的数据集。它在概念上等同于关系数据库中的表或R/Python中的数据框架,但其经过了优化。DataFrames可以从各种各样的源构建,例如:结构化数据文件,Hive中的表,外部数据库或现有RDD。

DataFrame API 可以被Scala,Java,Python和R调用。

在Scala和Java中,DataFrame由Rows的数据集表示。

在Scala API中,DataFrame只是一个类型别名Dataset[Row]。而在Java API中,用户需要Dataset<Row>用来表示DataFrame。

在本文档中,我们经常将Scala/Java数据集Row称为DataFrames。

那么DataFrame和spark核心数据结构RDD之间怎么进行转换呢?

代码如下:

# -*- coding: utf-8 -*-
from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.sql import Row

if __name__ == "__main__":
 # 初始化SparkSession
 spark = SparkSession \
 .builder \
 .appName("RDD_and_DataFrame") \
 .config("spark.some.config.option", "some-value") \
 .getOrCreate()

 sc = spark.sparkContext

 lines = sc.textFile("employee.txt")
 parts = lines.map(lambda l: l.split(","))
 employee = parts.map(lambda p: Row(name=p[0], salary=int(p[1])))

 #RDD转换成DataFrame
 employee_temp = spark.createDataFrame(employee)

 #显示DataFrame数据
 employee_temp.show()

 #创建视图
 employee_temp.createOrReplaceTempView("employee")
 #过滤数据
 employee_result = spark.sql("SELECT name,salary FROM employee WHERE salary >= 14000 AND salary <= 20000")

 # DataFrame转换成RDD
 result = employee_result.rdd.map(lambda p: "name: " + p.name + " salary: " + str(p.salary)).collect()

 #打印RDD数据
 for n in result:
 print(n)

以上这篇spark: RDD与DataFrame之间的相互转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python内置数据类型list各方法的性能测试过程解析

Python内置数据类型list各方法的性能测试过程解析

这篇文章主要介绍了Python内置数据类型list各方法的性能测试过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 测试环境...

使用python3+xlrd解析Excel的实例

实例如下所示: # -*- coding: utf-8 -*- import xlrd def open_excel(file = 'file.xls'):#打开要解析的Excel文...

Python中的单行、多行、中文注释方法

Python中的单行、多行、中文注释方法

一、python单行注释符号(#) python中单行注释采用 #开头 示例:#this is a comment 二、批量、多行注释符号 多行注释是用三引号”' ”'包含的,例如:...

Python 实现数组相减示例

问题描述: 有2个数组如下 a = [3,3,3,4,4,4,5,6,7] b = [3,3,4,4] 第1题:从数组a中删除所有在数组b中出现过的元素。对于上例来说,a删除结束...

python处理文本文件并生成指定格式的文件

import os import sys import string #以指定模式打开指定文件,获取文件句柄 def getFileIns(filePath,model)...