Numpy数据类型转换astype,dtype的方法

yipeiwu_com5年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中zip()函数的简单用法举例

Python中zip()函数的简单用法举例

定义:zip([iterable, ...]) zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由...

在python tkinter中Canvas实现进度条显示的方法

在python tkinter中Canvas实现进度条显示的方法

如下所示: from tkinter import * import time #更新进度条函数 def change_schedule(now_schedule,all_sch...

Python3 sys.argv[ ]用法详解

Python3 sys.argv[ ]用法详解

sys.argv[]说白了就是一个从程序外部获取参数的桥梁,这个“外部”很关键,因为我们从外部取得的参数可以是多个,所以获得的是一个列表(list),也就是说sys.argv其实可以看作...

Python 实现删除某路径下文件及文件夹的实例讲解

Python 实现删除某路径下文件及文件夹的脚本 #!/usr/bin/env python import os import shutil delList = [] delDir...

学习Django知识点分享

路由关系映射的一个小问题 URL中那个上尖号在正则中表示 以某某开头 $符号表示以某某结尾 这就限制了开头和结尾,也就固定了长度 但是 admin/123 也不能匹配到admin 为什...