Tensorflow使用tfrecord输入数据格式

yipeiwu_com5年前Python基础

Tensorflow 提供了一种统一的格式来存储数据,这个格式就是TFRecord,上一篇文章中所提到的方法当数据的来源更复杂,每个样例中的信息更丰富的时候就很难有效的记录输入数据中的信息了,于是Tensorflow提供了TFRecord来统一存储数据,接下来我们就来介绍如何使用TFRecord来同意输入数据的格式。

1. TFRecord格式介绍

TFRecord文件中的数据是通过tf.train.Example Protocol Buffer的格式存储的,下面是tf.train.Example的定义

message Example {
 Features features = 1;
};

message Features{
 map<string,Feature> featrue = 1;
};

message Feature{
  oneof kind{
    BytesList bytes_list = 1;
    FloatList float_list = 2;
    Int64List int64_list = 3;
  }
};

从上述代码可以看到,ft.train.Example 的数据结构相对简洁。tf.train.Example中包含了一个从属性名称到取值的字典,其中属性名称为一个字符串,属性的取值可以为字符串(BytesList ),实数列表(FloatList )或整数列表(Int64List )。例如我们可以将解码前的图片作为字符串,图像对应的类别标号作为整数列表。

2. 将自己的数据转化为TFRecord格式

准备数据

上一篇中,我们为了像伟大的MNIST致敬,所以选择图像的前缀来进行不同类别的分类依据,但是大多数的情况下,在进行分类任务的过程中,不同的类别都会放在不同的文件夹下,而且类别的个数往往浮动性又很大,所以针对这样的情况,我们现在利用不同类别在不同文件夹中的图像来生成TFRecord.

我们在Iris&Contact这个文件夹下有两个文件夹,分别为iris,contact。对于每个文件夹中存放的是对应的图片

转换数据

数据准备好以后,就开始准备生成TFRecord,具体代码如下:

import os 
import tensorflow as tf 
from PIL import Image 
import matplotlib.pyplot as plt 

cwd='/home/ruyiwei/Documents/Iris&Contact/'
classes={'iris','contact'} 
writer= tf.python_io.TFRecordWriter("iris_contact.tfrecords") 

for index,name in enumerate(classes):
  class_path=cwd+name+'/'
  for img_name in os.listdir(class_path): 
    img_path=class_path+img_name 
    img=Image.open(img_path)
    img= img.resize((512,80))
    img_raw=img.tobytes()
    #plt.imshow(img) # if you want to check you image,please delete '#'
    #plt.show()
    example = tf.train.Example(features=tf.train.Features(feature={
      "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
      'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
    })) 
    writer.write(example.SerializeToString()) 

writer.close()

3. Tensorflow从TFRecord中读取数据

def read_and_decode(filename): # read iris_contact.tfrecords
  filename_queue = tf.train.string_input_producer([filename])# create a queue

  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)#return file_name and file
  features = tf.parse_single_example(serialized_example,
                    features={
                      'label': tf.FixedLenFeature([], tf.int64),
                      'img_raw' : tf.FixedLenFeature([], tf.string),
                    })#return image and label

  img = tf.decode_raw(features['img_raw'], tf.uint8)
  img = tf.reshape(img, [512, 80, 3]) #reshape image to 512*80*3
  img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #throw img tensor
  label = tf.cast(features['label'], tf.int32) #throw label tensor
  return img, label

4. 将TFRecord中的数据保存为图片

filename_queue = tf.train.string_input_producer(["iris_contact.tfrecords"]) 
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)  #return file and file_name
features = tf.parse_single_example(serialized_example,
                  features={
                    'label': tf.FixedLenFeature([], tf.int64),
                    'img_raw' : tf.FixedLenFeature([], tf.string),
                  }) 
image = tf.decode_raw(features['img_raw'], tf.uint8)
image = tf.reshape(image, [512, 80, 3])
label = tf.cast(features['label'], tf.int32)
with tf.Session() as sess: 
  init_op = tf.initialize_all_variables()
  sess.run(init_op)
  coord=tf.train.Coordinator()
  threads= tf.train.start_queue_runners(coord=coord)
  for i in range(20):
    example, l = sess.run([image,label])#take out image and label
    img=Image.fromarray(example, 'RGB')
    img.save(cwd+str(i)+'_''Label_'+str(l)+'.jpg')#save image
    print(example, l)
  coord.request_stop()
  coord.join(threads)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅析Python 中几种字符串格式化方法及其比较

起步 在 Python 中,提供了很多种字符串格式化的方式,分别是 %-formatting、str.format 和 f-string 。本文将比较这几种格式化方法。 %- 格式化 这...

Python连接PostgreSQL数据库的方法

前言 其实在Python中可以用来连接PostgreSQL的模块很多,这里比较推荐psycopg2。psycopg2安装起来非常的简单(pip install psycopg2),这里主...

彻底理解Python中的yield关键字

彻底理解Python中的yield关键字

阅读别人的python源码时碰到了这个yield这个关键字,各种搜索终于搞懂了,在此做一下总结: 通常的for...in...循环中,in后面是一个数组,这个数组就是一个可迭代对象...

Python数据持久化存储实现方法分析

本文实例讲述了Python数据持久化存储实现方法。分享给大家供大家参考,具体如下: 1、pymongo的使用 前三步为创建对象 第一步创建连接对象 conn = pymong...

Python2.x与Python3.x的区别

Python的3​​.0版本,常被称为Python 3000,或简称Py3k。相对于Python的早期版本,这是一个较大的升级。 为了不带入过多的累赘,Pyth...