解决python读取几千万行的大表内存问题

yipeiwu_com6年前Python基础

Python导数据的时候,需要在一个大表上读取很大的结果集。

如果用传统的方法,Python的内存会爆掉,传统的读取方式默认在内存里缓存下所有行然后再处理,内存容易溢出

解决的方法:

1)使用SSCursor(流式游标),避免客户端占用大量内存。(这个cursor实际上没有缓存下来任何数据,它不会读取所有所有到内存中,它的做法是从储存块中读取记录,并且一条一条返回给你。)

2)使用迭代器而不用fetchall,即省内存又能很快拿到数据。

import MySQLdb.cursors

conn = MySQLdb.connect(host='ip地址', user='用户名', passwd='密码', db='数据库名', port=3306,
   charset='utf8', cursorclass = MySQLdb.cursors.SSCursor)
cur = conn.cursor()
cur.execute("SELECT * FROM bigtable");
row = cur.fetchone()
while row is not None:
 do something
 row = cur.fetchone()

cur.close()
conn.close()

需要注意的是,

1、因为SSCursor是没有缓存的游标,结果集只要没取完,这个conn是不能再处理别的sql,包括另外生成一个cursor也不行的。

如果需要干别的,请另外再生成一个连接对象。

2、 每次读取后处理数据要快,不能超过60s,否则mysql将会断开这次连接,也可以修改 SET NET_WRITE_TIMEOUT = xx 来增加超时间隔。

以上这篇解决python读取几千万行的大表内存问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python导包的几种方法(自定义包的生成以及导入详解)

python导包的几种方法(自定义包的生成以及导入详解)

python是一门灵活的语言,也可以说python是一门胶水语言,顾名思义,就是其可以导入各类的包,python的包可以说是所有语言中最多的。当然导入包大部分是为了更快捷,更方便,效率更...

python 容器总结整理

python 容器总结整理 list 可变数组 tuple 不可变数组 dict 键值对(key-value)的字典(dictionary) 初始化: a={‘lyt':90}...

Python使用pymongo库操作MongoDB数据库的方法实例

python操作mongodb数据库 # !/usr/bin/env python # -*- coding:utf-8 -*- """ 使用pymongo库操作MongoDB数据库...

Django与遗留的数据库整合的方法指南

Django的数据库层从Python代码生成SQL schemas—但是对于遗留数据库,你已经拥有SQL schemas. 这种情况,你需要为已经存在的数据表创建model. 为此,Dj...

Python实现时间序列可视化的方法

Python实现时间序列可视化的方法

时间序列数据在数据科学领域无处不在,在量化金融领域也十分常见,可以用于分析价格趋势,预测价格,探索价格行为等。 学会对时间序列数据进行可视化,能够帮助我们更加直观地探索时间序列数据,寻...