使用numpy和PIL进行简单的图像处理方法

yipeiwu_com5年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python写的Discuz7.2版faq.php注入漏洞工具

Discuz 7.2 faq.php全自动利用工具,getshell 以及dump数据,python 版的uc_key getshell部分的代码来自网上(感谢作者) 实现代码: #...

深入解析Python中的变量和赋值运算符

深入解析Python中的变量和赋值运算符

Python 变量类型 变量存储在内存中的值。这就意味着在创建变量时会在内存中开辟一个空间。 基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中。 因此,变量可以...

Python字典创建 遍历 添加等实用基础操作技巧

字段是Python是字典中唯一的键-值类型,是Python中非常重要的数据结构,因其用哈希的方式存储数据,其复杂度为O(1),速度非常快。下面列出字典的常用的用途. 一、字典中常见方法列...

Python自定义简单图轴简单实例

Python自定义简单图轴简单实例

简单定义图轴: import numpy as np import matplotlib.pyplot as plt 创建一个简单的matplotlib实例: fig = pl...

python使用xmlrpclib模块实现对百度google的ping功能

本文实例讲述了python使用xmlrpclib模块实现对百度google的ping功能。分享给大家供大家参考。具体分析如下: 最近在做SEO的时候,为了让发的外链能够快速的收录,想到了...