Tensorflow 实现修改张量特定元素的值方法

yipeiwu_com5年前Python基础

最近在做一个摘要生成的项目,过程中遇到了很多小问题,从网上查阅了许多别人解决不同问题的方法,自己也在旁边开了个jupyter notebook搞些小实验,这里总结一下遇到的一些问题。

Tensorflow用起来不是很顺手,很大原因在于tensor这个玩意儿,并不像数组或者列表那么的直观,直接print的话只能看到 Tensor(…) 这样的提示。比如下面这个问题,我们想要修改张量特定位置上的某个数值,操作起来就相对麻烦一些。和array一样,张量也是可以分段读取的,比如 tensor[1:10], tensor[:3]这种操作都是支持的,但是,张量是不能直接修改数值的。

比如,如果是array的话,一句赋值语句就可以将某个元素的值进行修改,但是,如果用同样的方法处理tensor的话,就会报错:

import tensorflow as tf
tensor_1 = tf.constant([x for x in range(1,10)])
# tensor_1 是一个数值为1到9的张量,希望把中间第五个数值改为0 
tensor_1[4] = 0 

这时就会报错,错误类型是:

TypeError: 'Tensor' object does not support item assignment

所以说tensor是可以分段读取,但是不能直接修改的,有点像“只读”的模式。怎么解决呢?从其他博客中我总结了一个方法,后来自己又想了一个:

# 方法一 : 运用concat函数
tensor_1 = tf.constant([x for x in range(1,10)])
# 将原来的张量拆分为3部分,修改位置前的部分,要修改的部分和修改位置之后的部分
i = 4
part1 = tensor_1[:i]
part2 = tensor_1[i+1:]
val = tf.constant([0])
new_tensor = tf.concat([part1,val,part2], axis=0)

这时候再去打印,就可以看到第五个数已经变成了0。

# 方法二:使用one_hot来进行加减运算
tensor_1 = tf.constant([x for x in range(1,10)])
i = 4
# 生成一个one_hot张量,长度与tensor_1相同,修改位置为1
shape = tensor_1.get_shape().as_list()
one_hot = tf.one_hot(i,shape[0],dtype=tf.int32)
# 做一个减法运算,将one_hot为一的变为原张量该位置的值进行相减
new_tensor = tensor_1 - tensor_1[i] * one_hot

当然,tensor有一个assign的函数,但是他每次更新不能针对于相对位置,而是相当于对整个变量的重新赋值,在某些特定场合下,这个自带函数似乎并不是太好用。

以上这篇Tensorflow 实现修改张量特定元素的值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中获取对象信息的方法

当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢? 使用type() 首先,我们来判断对象类型,使用type()函数: 基本类型都可以用type()判断: >...

Python读取excel指定列生成指定sql脚本的方法

需求 最近公司干活,收到一个需求,说是让手动将数据库查出来的信息复制粘贴到excel中,在用excel中写好的公式将指定的两列数据用update这样的语句替换掉。 例如: 有个A库,其...

详解python列表生成式和列表生成式器区别

本文实例为大家分享了python(列表生成式/器)的具体代码,供大家参考,具体内容如下 一、列表生成式 #列表生成式是快速生成一个列表的一些公式 numbers = [] for...

浅谈Python黑帽子取代netcat

浅谈Python黑帽子取代netcat

按照各位大佬的博客来,端口连接的命令始终连接不上。 后来问了同学,在开了监听之后: 使用书上的代码连接不能成功,连接的命令改成:nc www.baidu.com 80(同理 监听本地就...

django-rest-framework解析请求参数过程详解

django-rest-framework解析请求参数过程详解

前言 我们在django-rest-framework 自定义swagger 文章中编写了接口, 调通了接口文档. 接口文档可以直接填写参数进行请求, 接下来的问题是如何接受参数, 由...