Pandas GroupBy对象 索引与迭代方法

yipeiwu_com6年前Python基础

如下所示:

import pandas as pd
df = pd.DataFrame({'性别' : ['男', '女', '男', '女',
        '男', '女', '男', '男'],
      '成绩' : ['优秀', '优秀', '及格', '差',
        '及格', '及格', '优秀', '差'],
      '年龄' : [15,14,15,12,13,14,15,16]})
GroupBy=df.groupby("性别")

GroupBy.iter()

GroupBy对象是一个迭代对象,每次迭代结果是一个元组,元组的第一个元素是该组的名称(就是groupby的列的元素名称),第二个元素是该组的具体信息,是一个数据框,索引是以前的数据框的总索引

for name,group in GroupBy:
 print(name)
 print(group)
女
 年龄 性别 成绩
1 14 女 优秀
3 12 女 差
5 14 女 及格
男
 年龄 性别 成绩
0 15 男 优秀
2 15 男 及格
4 13 男 及格
6 15 男 优秀
7 16 男 差

GroupBy.groups

显示分组的组名,以及所对应的索引

print(GroupBy.groups)
{'女': Int64Index([1, 3, 5], dtype='int64'), '男': Int64Index([0, 2, 4, 6, 7], dtype='int64')}

GroupBy.indices

类似于GroupBy.groups

print(GroupBy.indices)
{'女': array([1, 3, 5], dtype=int64), '男': array([0, 2, 4, 6, 7], dtype=int64)}

GroupBy.get_group(name[, obj])

获得某一个分组的具体信息

In [2]: GroupBy.get_group("男")
Out[2]: 
 年龄 性别 成绩
0 15 男 优秀
2 15 男 及格
4 13 男 及格
6 15 男 优秀
7 16 男 差

Grouper([key, level, freq, axis, sort])

应用

可以先通过循环获得所有的组的名称

for name in GroupBy:
 print(name)# 获得所有分组的名称
 GroupBy.get_group(name) #获得所有该名称的数据

以上这篇Pandas GroupBy对象 索引与迭代方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

解决os.path.isdir() 判断文件夹却返回false的问题

今天使用os.path.isdir()判断是否是文件夹的时候发现一个问题: lst = os.listdir(path) for i in lst: if os....

Python设计模式之抽象工厂模式

Python设计模式之抽象工厂模式

python面向对象编程入门,我们需要不断学习进步 """抽象工厂模式的实现""" import random class PetShop: """宠物商店""" d...

Python+OpenCv制作证件图片生成器的操作方法

本项目使用Python和OpenCv实现身份证图片生成工具,填入信息,选择一张头像图片(即可生成黑白和彩色身份证图片)。可以选择是否自动抠图,自动抠图目前仅支持蓝色背景,对自动抠图效果不...

python破解zip加密文件的方法

python破解zip加密文件的方法

首先我们先来桌面创建一个文件 我们创建了一个名为q的txt文件然后我们将它压缩,压缩的时候记得设置上密码 我这边将密码设置为123456, 接下来我们打开我们的编写工具,开始...

Python中Django 后台自定义表单控件

Python中Django 后台自定义表单控件

在 django 中我们可以在 admin.py 中添加 ModelAdmin,这样就能很方便地在后台进行增删改查的操作。然而,对应 Model 生成的表单,并不友好,我们希望能像前端开...