Python数据集切分实例

yipeiwu_com6年前Python基础

在处理数据过程中经常要把数据集切分为训练集和测试集,因此记录一下切分代码。

'''
data:数据集
test_ratio:测试机占比
如果data为numpy.numpy.ndarray直接使用此代码
如果data为pandas.DatFrame类型则
  return data[train_indices],data[test_indices]
修改为
  return data.iloc[train_indices],data.iloc[test_indices]
'''
def split_train(data,test_ratio):
  shuffled_indices=np.random.permutation(len(data))
  test_set_size=int(len(data)*test_ratio)
  test_indices =shuffled_indices[:test_set_size]
  train_indices=shuffled_indices[test_set_size:]
  return data[train_indices],data[test_indices]

测试代码如下:

import numpy as np
import pandas as pd
data=np.random.randint(100,size=[25,4])
print(data)

结果如下:

Python数据集切分

Python数据集切分

从上图可以看出,原数据集按照5:1被随机分为两部分。但是此种方法存在一个缺点–每次调用次函数切分同一个数据集切分出来的结果都不一样,因此常在np.random.permutation(len(data))先调用np.random.seed(int)函数,来确保每次切分来的结果相同。

因此将上述函数改为:

def split_train(data,test_ratio):
  np.random.seed(43)
  shuffled_indices=np.random.permutation(len(data))
  test_set_size=int(len(data)*test_ratio)
  test_indices =shuffled_indices[:test_set_size]
  train_indices=shuffled_indices[test_set_size:]
  return data[train_indices],data[test_indices]

这个函数np.random.seed(43)当参数为同一整数时产生的随机数相同。

以上这篇Python数据集切分实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对python list 遍历删除的正确方法详解

在遍历list的时候,删除符合条件的数据,可是总是报异常,代码如下: num_list = [1, 2, 3, 4, 5] print(num_list) for i in ra...

pycharm new project变成灰色的解决方法

在ubuntu下面发生的 原因是:开了多个pycharm,关掉那个new project选项是灰色的,剩下的那个pycharm的new project应该就能用。 以上这篇pycharm...

Python远程视频监控程序的实例代码

老板由于事务繁忙无法经常亲临教研室,于是让我搞个监控系统,让他在办公室就能看到教研室来了多少人。o(>﹏<)o||| 最初我的想法是直接去网上下个软件,可是找来找去不是有毒就...

详解python调度框架APScheduler使用

最近在研究python调度框架APScheduler使用的路上,那么今天也算个学习笔记吧! # coding=utf-8 """ Demonstrates how to use t...

详解python函数的闭包问题(内部函数与外部函数详述)

python函数的闭包问题(内嵌函数) >>> def func1(): ... print ('func1 running...') ... def fu...