python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

TensorFlow模型保存/载入的两种方法

TensorFlow 模型保存/载入 我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来。tensorflow保存模型的方式与sklearn不太一样,sklearn很直...

Python为何不能用可变对象作为默认参数的值

Python为何不能用可变对象作为默认参数的值

先来看一道题目: >>> def func(numbers=[], num=1): ... numbers.append(num) ... return numbe...

使用Python脚本从文件读取数据代码实例

这篇文章主要介绍了使用Python脚本从文件读取数据代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 最近自学Python的进度...

在django-xadmin中APScheduler的启动初始化实例

环境: python3.5.x + django1.9.x + xadmin-for-python3 APScheduler做为一个轻量级和使用量很多的后台任务计划(scheduler)...

详解python中的线程

Python中创建线程有两种方式:函数或者用类来创建线程对象。 函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程。 类:创建threading...