对python指数、幂数拟合curve_fit详解

yipeiwu_com5年前Python基础

1、一次二次多项式拟合

一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。

2、指数幂数拟合curve_fit

使用scipy.optimize 中的curve_fit,幂数拟合例子如下:

from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
 
def func(x, a, b, c):
 return a * np.exp(-b * x) + c
 
xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
ydata = y + 0.2 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(func, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [func(i, popt[0],popt[1],popt[2]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt

下面是原始数据和拟合曲线:

python指数、幂数拟合curve_fit

下面是指数拟合例子:

def fund(x, a, b):
 return x**a + b
 
xdata = np.linspace(0, 4, 50)
y = fund(xdata, 2.5, 1.3)
ydata = y + 4 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(fund, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [fund(i, popt[0],popt[1]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt

下图是原始数据和拟合曲线:

python指数、幂数拟合curve_fit

以上这篇对python指数、幂数拟合curve_fit详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单了解Django应用app及分布式路由

简单了解Django应用app及分布式路由

前言 应用在Django的项目中是一个独立的业务模块,可以包含自己的路由,视图,模板,模型. 一 创建应用程序 创建步骤 用manage.py中的子命令startapp创建应用文件夹...

对numpy中数组转置的求解以及向量内积计算方法

有点抱歉的是我的数学功底确实是不好,经过了高中的紧张到了大学之后松散了下来。原本高中就有点拖后腿的数学到了大学之后更是一落千丈。线性代数直接没有学明白,同样没有学明白的还有概率及统计以及...

python创建进程fork用法

本文实例讲述了python创建进程fork用法。分享给大家供大家参考。具体分析如下: #!coding=utf-8 import os ,traceback import time...

使用python实现回文数的四种方法小结

回文数就是指整数倒过来和原整数相等。 Example 1: Input: 121 Output: true Example 2: Input: -121 Output:...

详解python调度框架APScheduler使用

最近在研究python调度框架APScheduler使用的路上,那么今天也算个学习笔记吧! # coding=utf-8 """ Demonstrates how to use t...