用Python PIL实现几个简单的图片特效

yipeiwu_com6年前Python基础

导入 numpy 、PIL

numpy用来做矩阵运算,PIL用来读取图片。

import numpy as np
from PIL import Image

读取图片,然后转换成RGB模式存在矩阵里

im = Image.open(imagename).convert('RGB')
arr = np.array(im)

查看arr的shape,可以看到arr是个3维的数组,数组大小等于 长*宽*3

In [566]: arr.shape
Out[566]: (313, 450, 3)

每个像素有3个数字表示,分别对应(R,G,B)

IN [567]: arr[0][0]
Out[567]: array([6, 4, 9], dtype=uint8)

原始图片

彩色转黑白

把像素的R,G,B三个通道数值都置为r*0.299+g*0.587+b*0.114

def blackWithe(imagename):
  # r,g,b = r*0.299+g*0.587+b*0.114
  im = np.asarray(Image.open(imagename).convert('RGB'))
  trans = np.array([[0.299,0.587,0.114],[0.299,0.587,0.114],[0.299,0.587,0.114]]).transpose()
  im = np.dot(im,trans)
  return Image.fromarray(np.array(im).astype('uint8'))

流年

把R通道的数值开平方,然后乘以一个参数

def fleeting(imagename,params=12):
  im = np.asarray(Image.open(imagename).convert('RGB'))
  im1 = np.sqrt(im*[1.0,0.0,0.0])*params
  im2 = im*[0.0,1.0,1.0]
  im = im1+im2
  return Image.fromarray(np.array(im).astype('uint8')) 

旧电影

把像素的R,G,B三个通道数值,3个通道的分别乘以3个参数后求和,最后把超过255的值置为255

def oldFilm(imagename):
  im = np.asarray(Image.open(imagename).convert('RGB'))
  # r=r*0.393+g*0.769+b*0.189 g=r*0.349+g*0.686+b*0.168 b=r*0.272+g*0.534b*0.131
  trans = np.array([[0.393,0.769,0.189],[0.349,0.686,0.168],[0.272,0.534,0.131]]).transpose()
  # clip 超过255的颜色置为255
  im = np.dot(im,trans).clip(max=255)        
  return Image.fromarray(np.array(im).astype('uint8')) 

反色

这个最简单了,用255减去每个通道的原来的数值

def reverse(imagename):
  im = 255 - np.asarray(Image.open(imagename).convert('RGB'))
  return Image.fromarray(np.array(im).astype('uint8')) 

PS:示例

from PIL import Image, ImageFilter

# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('Penguins.jpg')



# 模糊
im2 = im.filter(ImageFilter.BLUR)
# 模糊可设置模糊的程度
im22 = im.filter(ImageFilter.BoxBlur(200))
# 轮廓滤波
im3 = im.filter(ImageFilter.CONTOUR)
# 边缘增强滤波(锐化)
im4 = im.filter(ImageFilter.EDGE_ENHANCE)
# 浮雕滤波
im5 = im.filter(ImageFilter.EMBOSS)
# 寻找边缘信息的滤波
im6 = im.filter(ImageFilter.FIND_EDGES)

im2.save('BLUR.jpg', 'jpeg')
im3.save('CONTOUR.jpg', 'jpeg')
im4.save('EDGE_ENHANCE.jpg', 'jpeg')
im5.save('EMBOSS.jpg', 'jpeg')
im6.save('FIND_EDGES.jpg', 'jpeg')
im22.save('BoxBlur(200).jpg', 'jpeg')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3之不使用第三方变量,实现交换两个变量的值

method 1: a,b = b,a method 2: a = a+b b = a-b a = a-b 以上这篇Python3之不使用第三方变量,实现交换两个变量的...

解决安装tensorflow遇到无法卸载numpy 1.8.0rc1的问题

最近在关注 Deep Learning,就在自己的mac上安装google的开源框架Tensorflow 用 sudo pip install -U tensorflow 安装的时候总...

Django 路由系统URLconf的使用

Django 路由系统URLconf的使用

URLconf是什么? URL配置(URLconf)就像Django 所支撑网站的目录。它的本质是URL与要为该URL调用的view函数之间的映射表;你就是以这种方式告诉Django,...

python pandas 时间日期的处理实现

python pandas 时间日期的处理实现

摘要在上一篇文章,时间日期处理的入门里面,我们简单介绍了一下载pandas里对时间日期的简单操作。下面将补充一些常用方法。 时间日期的比较 假设我们有数据集df如下 在对时间日期...

使用django的objects.filter()方法匹配多个关键字的方法

介绍: 今天在使用django的时候忽然想用到,如何匹配多个关键字的操作,我们知道django有一个objects.filter()方法,我们可以通过如下一句代码实现匹配数据库中titl...