opencv python统计及绘制直方图的方法

yipeiwu_com5年前Python基础

灰度直方图概括了图像的灰度级信息,简单的来说就是每个灰度级图像中的像素个数以及占有率,创建直方图无外乎两个步骤,统计直方图数据,再用绘图库绘制直方图。

统计直方图数据

首先要稍微理解一些与函数相关的术语,方便理解其在python3库中的应用和处理

BINS: 在上面的直方图当中,如果像素值是0到255,则需要256个值来显示直 方图。但是,如果不需要知道每个像素值的像素数目,只想知道两个像素值之间的像素点数目怎么办?例如,想知道像素值在0到15之间的像素点数目,然后是16到31。。。240到255。可以将256个值分成16份,每份计算综合。每个分成的小组就是一个BIN(箱)。在opencv中使用histSize表示BINS。

DIMS: 数据的参数数目。当前例子当中,对收集到的数据只考虑灰度值,所以该值为1。

RANGE: 灰度值范围,通常是[0,256],也就是灰度所有的取值范围。

统计直方图同样有两种方法,使用opencv统计直方图,函数如下:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

该函数的参数在了解以上术语加上自己百度后可以简单应用

使用numpy统计函数,主要应用 numpy.histogram() 函数(还有 np.bincount() ,还未尝试,读者可以自己尝试,大抵使用方法相同)

hist,bins = np.histogram(img.ravel(),256,[0,256])

opencv处理速度优于numpy,同时对于学习opencv的同学来说,多运用cv的处理方法无疑更利于学习。

绘制直方图

绘制直方图一般使用Matplotlib绘制 ,这里要提一下matplotlib的 matplotlib.pyplot.hist() 函数,该函数可以直接统计绘制中方图。统计函数为 calcHist()np.histogram()
这是处理的样图

下面是代码实现

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('/home/yc/Pictures/cat.jpg',0)
plt.hist(img.ravel(),256,[0,256]);
plt.show()

效果

灰度直方图

当然,在颜色图像检索之类用法时,我们需要的是BGR直方图,原理类似,统计时使用 cv2.calcHist()

函数

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('/home/yc/Pictures/cat.jpg',1)
color = ('b','g','r')
for i,col in enumerate(color):
  histr = cv2.calcHist([img],[i],None,[256],[0,256])
  plt.plot(histr,color = col)
  plt.xlim([0,256])
plt.show()

效果如下

BGR直方图

此外,再介绍一种很原始的计算灰度直方图的方法……感觉代码注释的很完整,相信读者也可以看懂

import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt

def main():
  img=cv2.imread('/home/yc/Pictures/cat.jpg',0)
  #得到计算灰度直方图的值
  xy=xygray(img)  

  #画出灰度直方图
  x_range=range(256)
  plt.plot(x_range,xy,"r",linewidth=2,c='black')
  #设置坐标轴的范围
  y_maxValue=np.max(xy)
  plt.axis([0,255,0,y_maxValue])
  #设置坐标轴的标签
  plt.xlabel('gray Level')
  plt.ylabel("number of pixels")
  plt.show()

def xygray(img):
  #得到高和宽
  rows,cols=img.shape
  #存储灰度直方图
  xy=np.zeros([256],np.uint64)
  for r in range(rows):
    for c in range(cols):
      xy[img[r][c]] += 1
  #返回一维ndarry
  return xy

main()

效果如下

灰度直方图

以上就是本文的全部内容,与一起学习opencv的同学共勉,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 统计字数的思路详解

 问题描述: 用 Python 实现函数 count_words(),该函数输入字符串 s 和数字 n,返回 s 中 n 个出现频率最高的单词。返回值是一个元组列表,包含出现次...

python中通过预先编译正则表达式提高效率

前言 在re的正则表达式模块里,可以通过模块的方式来访问正则表达式,但是如果重复多次地使用正则表达式,最好是使用compile函数把正则表达式编译成对象RegexObject,这样会大大...

python实现井字棋游戏

本文实例介绍了python实现井字棋游戏的方法,分享给大家,具体内容如下 windows7下python3.4.0编译运行通过。由于采用了cmd调用,所以与Linux不兼容,无法在Lin...

Python中线程的MQ消息队列实现以及消息队列的优点解析

“消息队列”是在消息的传输过程中保存消息的容器。消息队列管理器在将消息从它的源中继到它的目标时充当中间人。队列的主要目的是提供路由并保证消息的传递;如果发送消息时接收者不可用,消息队列会...

python得到单词模式的示例

python得到单词模式的示例

如下所示: def getWordPattern(word): pattern = [] usedLetter={} count=0 for i in word: if i...