Pandas之ReIndex重新索引的实现

yipeiwu_com5年前Python基础

约定:

import pandas as pd
import numpy as np

ReIndex重新索引

reindex()是pandas对象的一个重要方法,其作用是创建一个新索引的新对象。

一、对Series对象重新索引

se1=pd.Series([1,7,3,9],index=['d','c','a','f'])
se1

代码结果:

d    1
c    7
a    3
f    9
dtype: int64

调用reindex将会重新排序,缺失值则用NaN填补。

se2=se1.reindex(['a','b','c','d','e','f'])
se2

代码结果:

a    3.0
b    NaN
c    7.0
d    1.0
e    NaN
f    9.0
dtype: float64

传入method=” “重新索引时选择插值处理方式:

method='ffill'或'pad 前向填充

method='bfill'或'backfill 后向填充

se3=pd.Series(['blue','red','black'],index=[0,2,4])
se4=se3.reindex(range(6),method='ffill')
se4

代码结果:

0     blue
1     blue
2      red
3      red
4    black
5    black
dtype: object

二、对DataFrame对象重新索引

对于DataFrame对象,reindex能修改行索引和列索引。

df1=pd.DataFrame(np.arange(9).reshape(3,3),index=['a','c','d'],columns=['one','two','four'])
df1

代码结果:

one two four
a 0 1 2
c 3 4 5
d 6 7 8

默认对行索引重新排序

只传入一个序列不能重新排序列索引

df1.reindex(['a','b','c','d'])

代码结果:

one two four
a 0.0 1.0 2.0
b NaN NaN NaN
c 3.0 4.0 5.0
d 6.0 7.0 8.0

df1.reindex(index=['a','b','c','d'],columns=['one','two','three','four'])

代码结果:

one two three four
a 0.0 1.0 NaN 2.0
b NaN NaN NaN NaN
c 3.0 4.0 NaN 5.0
d 6.0 7.0 NaN 8.0

传入fill_value=n用n代替缺失值:

df1.reindex(index=['a','b','c','d'],columns=['one','two','three','four'],fill_value=100)

代码结果:

one two three four
a 0 1 100 2
b 100 100 100 100
c 3 4 100 5
d 6 7 100 8

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单了解django索引的相关知识

简单了解django索引的相关知识

前言 由于数据库每天都用来存储越来越多的信息,因此这些也是每个Django项目中的关键组件。 因此了解它们的工作方式非常重要。 当然,我无法解释所有可用于Django的不同数据库的全部细...

使用Python中的greenlet包实现并发编程的入门教程

1   动机 greenlet 包是 Stackless 的副产品,其将微线程称为 “tasklet” 。tasklet运行在伪并发中,使用channel进行同步数据...

python实现微信自动回复及批量添加好友功能

先给大家介绍下python微信自动回复功能 1.当收到好友消息时,自动回复 import random import itchat import requests import ti...

python实现图片九宫格分割

大家都知道在微信朋友圈或者微博以及QQ动态中,有很多“强迫症患者”发图片都爱发9张,而有些图是一张图片分成的九宫图,对于这种操作,大家知道是怎么做到的吗? 本文就是用Python做的一个...

python 实现删除文件或文件夹实例详解

python 实现删除文件或文件夹           最近自己学习Python 的知识,自己学...