Pandas之Dropna滤除缺失数据的实现方法

yipeiwu_com6年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])
print(se1)
se1.dropna()

代码结果:

0    4.0
1    NaN
2    8.0
3    NaN
4    5.0
dtype: float64

0    4.0
2    8.0
4    5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0    4.0
2    8.0
4    5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2
0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaN
df1

代码结果:

0 1 2 3
0 1.0 2.0 3.0 NaN
1 NaN NaN 2.0 NaN
2 NaN NaN NaN NaN
3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)

df1.dropna(thresh=3)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django 过滤器汇总及自定义过滤器使用详解

Django 过滤器 过滤器 描述 示例 upper 以大写方式输出 {...

深入解析Python的Tornado框架中内置的模板引擎

深入解析Python的Tornado框架中内置的模板引擎

template中的_parse方法是模板文法的解析器,而这个文件中一坨一坨的各种node以及block,就是解析结果的承载者,也就是说在经过parse处理过后,我们输入的tornado...

python通过socket查询whois的方法

本文实例讲述了python通过socket查询whois的方法。分享给大家供大家参考。具体实现方法如下: import socket s = socket.socket(socket...

Django打印出在数据库中执行的语句问题

先给大家介绍下Django打印出在数据库中执行的语句 有时我们需要看models操作时对应的SQL语句, 可以用如下方法查看--- 在django project中的settings文件...

Python 使用多属性来进行排序

Python 中 list.sort() 是列表中非常常用的排序函数, key 参数可以对单个属性进行排序。 但是想要实现类似 sql 中 order by id, age 一样,对多个...