opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

yipeiwu_com5年前Python基础

图像的轮廓检测,如计算多边形外界、形状毕竟、计算感兴趣区域等。

Contours : Getting Started

轮廓

简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度.
轮廓是形状分析和物体检测和识别的有用工具

NOTE

  • 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测
  • 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回
  • 在OpenCV中,查找轮廓是从黑色背景中查找白色对象

findContours(image, mode, method[, contours[, hierarchy[, offset]]])

  • image:原图像
  • mode:轮廓检索模式
  • method:轮廓近似方法

输出为: 修改后的图像,轮廓,层次结构

轮廓是所有轮廓的列表.每个单独的轮廓是对象边界点的坐标.

轮廓检索模式 含义
cv2.RETR_EXTERNAL 只检测外轮廓
cv2.RETR_LIST 提取所有轮廓并将其放入列表,不建立等级关系
cv2.RETR_CCOMP 建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层
cv2.RETR_TREE 建立一个等级树结构的轮廓

轮廓逼近方法 含义
cv2.CHAIN_APPROX_NONE 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
cv2.CHAIN_APPROX_SIMPLE 压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
cv2.CHAIN_APPROX_TC89_L1 或 cv2.CHAIN_APPROX_TC89_KCOS 应用Teh-Chin链近似算法

代码:

import cv2
import numpy as np

img = cv2.imread('img.jpg')
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 127, 255, 0)
im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

绘制轮廓

cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]])

  • image:原图像
  • contours:作为Python列表传递的轮廓
  • contourIdx:轮廓索引(在绘制单个轮廓时很有用。绘制所有轮廓,传递-1)

要绘制图像中的所有轮廓:
cv.drawContours(img,contours,-1,(0,255,0),3)

要绘制单个轮廓,比如第4个轮廓:
cv.drawContours(img,contours,3,(0,255,0),3)

但大多数情况下,绘制第4个轮廓,以下方法将非常有用:
cnt = contours[4]
cv.drawContours(img,[cnt],0,(0,255,0),3)

代码:

import cv2
import numpy as np

img = cv2.imread('img7.png')
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 127, 255, 0)
im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
cv2.drawContours(img,[cnt],0,(0,255,0),3)

cv2.imshow('src',img)

cv2.waitKey()


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python决策树分类算法学习

Python决策树分类算法学习

从这一章开始进入正式的算法学习。 首先我们学习经典而有效的分类算法:决策树分类算法。 1、决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归。不...

详谈python http长连接客户端

背景: 线上机器,需要过滤access日志,发送给另外一个api 期初是单进程,效率太低,改为多进程发送后,查看日志中偶尔会出现异常错误(忘记截图了。。。) 总之就是端口不够用了报错 原...

Python Lambda函数使用总结详解

这篇文章主要介绍了Python Lambda函数使用总结详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 lambda表达式是一种匿...

使用Python装饰器在Django框架下去除冗余代码的教程

 Python装饰器是一个消除冗余的强大工具。随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能。 例如让我们看看Django web框架,该...

Python多版本开发环境管理工具介绍

前言 在Python开发中,有些情况下,我们可能面临在一台机器上同时安装多版本Python的需求。比如: 有多个Python项目,每个项目依赖不同的Python版本。 有一个Pyth...