Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com6年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 中的with关键字使用详解

在 Python 2.5 中, with 关键字被加入。它将常用的 try ... except ... finally ... 模式很方便的被复用。看一个最经典的例子: with...

菜鸟使用python实现正则检测密码合法性

客户系统升级,要求用户密码符合一定的规则,即:包含大小写字母、数字、符号,长度不小于8,于是先用python写了个简单的测试程序: 在写解决方案前,列一下 python正则表达式中的特殊...

Django admin实现图书管理系统菜鸟级教程完整实例

Django admin实现图书管理系统菜鸟级教程完整实例

Django 有着强大而又及其易用的admin后台,在这里,你可以轻松实现复杂代码实现的功能,如搜索,筛选,分页,题目可编辑,多选框. 简单到,一行代码就可以实现一个功能,而且模块之间耦...

Python模拟用户登录验证

Python模拟用户登录验证

本文实例为大家分享了Python模拟用户登录验证的具体代码,供大家参考,具体内容如下 1.功能简介 此程序模拟用户登录验证的过程,实现用户名输入、黑名单检测、用户有效性判别、密码输入及验...

不管你的Python报什么错,用这个模块就能正常运行

不管你的Python报什么错,用这个模块就能正常运行

Fucklt.py 使用了最先进的技术能够使你的代码不管里面有什么样的错误,你只管 FuckIt,程序就能"正常"执行,兵来将挡水来土掩。 是不是感觉很不讲道理,这样还担心自己的代码不能...