浅谈Python小波分析库Pywavelets的一点使用心得

yipeiwu_com5年前Python基础

本文介绍了Python小波分析库Pywavelets,分享给大家,具体如下:

# -*- coding: utf-8 -*- 
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import datetime 
from scipy import interpolate
from pandas import DataFrame,Series

import numpy as np 
import pywt 

data = np.linspace(1, 4, 7) 

# pywt.threshold方法讲解: 
#        pywt.threshold(data,value,mode ='soft',substitute = 0 ) 
#        data:数据集,value:阈值,mode:比较模式默认soft,substitute:替代值,默认0,float类型 

#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#output:[ 6.  6.  0.  0.5 1.  1.5 2. ] 
#soft 因为data中1小于2,所以使用6替换,因为data中第二个1.5小于2也被替换,2不小于2所以使用当前值减去2,,2.5大于2,所以2.5-2=0.5..... 

print(pywt.threshold(data, 2, 'soft',6))  


#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#hard data中绝对值小于阈值2的替换为6,大于2的不替换 
print (pywt.threshold(data, 2, 'hard',6)) 


#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#data中数值小于阈值的替换为6,大于等于的不替换 
print (pywt.threshold(data, 2, 'greater',6) )

print (data )
#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#data中数值大于阈值的,替换为6 
print (pywt.threshold(data, 2, 'less',6) )

[6. 6. 0. 0.5 1. 1.5 2. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 6. 6. 6. 6. ]

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt

import pywt
import pywt.data


ecg = pywt.data.ecg()

data1 = np.concatenate((np.arange(1, 400),
            np.arange(398, 600),
            np.arange(601, 1024)))
x = np.linspace(0.082, 2.128, num=1024)[::-1]
data2 = np.sin(40 * np.log(x)) * np.sign((np.log(x)))

mode = pywt.Modes.smooth


def plot_signal_decomp(data, w, title):
  """Decompose and plot a signal S.
  S = An + Dn + Dn-1 + ... + D1
  """
  w = pywt.Wavelet(w)#选取小波函数
  a = data
  ca = []#近似分量
  cd = []#细节分量
  for i in range(5):
    (a, d) = pywt.dwt(a, w, mode)#进行5阶离散小波变换
    ca.append(a)
    cd.append(d)

  rec_a = []
  rec_d = []

  for i, coeff in enumerate(ca):
    coeff_list = [coeff, None] + [None] * i
    rec_a.append(pywt.waverec(coeff_list, w))#重构

  for i, coeff in enumerate(cd):
    coeff_list = [None, coeff] + [None] * i
    if i ==3:
      print(len(coeff))
      print(len(coeff_list))
    rec_d.append(pywt.waverec(coeff_list, w))

  fig = plt.figure()
  ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1)
  ax_main.set_title(title)
  ax_main.plot(data)
  ax_main.set_xlim(0, len(data) - 1)

  for i, y in enumerate(rec_a):
    ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2)
    ax.plot(y, 'r')
    ax.set_xlim(0, len(y) - 1)
    ax.set_ylabel("A%d" % (i + 1))

  for i, y in enumerate(rec_d):
    ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2)
    ax.plot(y, 'g')
    ax.set_xlim(0, len(y) - 1)
    ax.set_ylabel("D%d" % (i + 1))


#plot_signal_decomp(data1, 'coif5', "DWT: Signal irregularity")
#plot_signal_decomp(data2, 'sym5',
#          "DWT: Frequency and phase change - Symmlets5")
plot_signal_decomp(ecg, 'sym5', "DWT: Ecg sample - Symmlets5")


plt.show()

72
5

将数据序列进行小波分解,每一层分解的结果是上次分解得到的低频信号再分解成低频和高频两个部分。如此进过N层分解后源信号X被分解为:X = D1 + D2 + … + DN + AN 其中D1,D2,…,DN分别为第一层、第二层到等N层分解得到的高频信号,AN为第N层分解得到的低频信号。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3使用xml.dom.minidom和xml.etree模块儿解析xml文件封装函数的方法

总结了一下使用Python对xml文件的解析,用到的模块儿如下: 分别从xml字符串和xml文件转换为xml对象,然后解析xml内容,查询指定信息字段。 from xml.dom.m...

python实现可逆简单的加密算法

python实现可逆简单的加密算法

最近想把word密码文件的服务器密码信息归档到mysql数据库,心想着如果直接在里面写明文密码会不会不安全,如果用sha这些不可逆的算法又没法还原回来,所以自己就想着用Python写一个...

Python使用crontab模块设置和清除定时任务操作详解

Python使用crontab模块设置和清除定时任务操作详解

本文实例讲述了Python使用crontab模块设置和清除定时任务操作。分享给大家供大家参考,具体如下: centos7下安装Python的pip root用户使用yum install...

Python面向对象程序设计OOP深入分析【构造函数,组合类,工具类等】

本文深入分析了Python面向对象程序设计OOP。分享给大家供大家参考,具体如下: 下面是一个关于OOP的实例,模块文件为person.py # File person.py(sta...

使用Python在Windows下获取USB PID&VID的方法

在Linux系统下获取USB PID&VID是件十分容易的事情,只需要"lsusb"命令就可以了。 不过,对于Windows,就没有那么容易了。 之前,有尝试过通过注册表来获得目前连接d...