python 图片去噪的方法示例

yipeiwu_com5年前Python基础

图像可能在生成、传输或者采集过程中夹带了噪声,去噪声是图像处理中常用的手法。通常去噪声用滤波的方法,比如中值滤波、均值滤波。但是那样的算法不适合用在处理字符这样目标狭长的图像中,因为在滤波的过程中很有可能会去掉字符本身的像素。

一个采用的是去除杂点的方法来进行去噪声处理的。具体算法如下:扫描整个图像,当发现一个黑色点的时候,就考察和该黑色点间接或者直接相连接的黑色点的个数有多少,如果大于一定的值,那就说明该点不是离散点,否则就是离散点,把它去掉。在考察相连的黑色点的时候用的是递归的方法。此处,我简单的用python实现了,大家可以参考以下。

#coding=utf-8
"""
造物奇迹QQ2737499951
"""
import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image,ImageEnhance,ImageFilter
 
img_name = 'test.jpg'
#去除干扰线
im = Image.open(img_name)
#图像二值化
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
data = im.getdata()
w,h = im.size
#im.show()
black_point = 0
for x in xrange(1,w-1):
  for y in xrange(1,h-1):
    mid_pixel = data[w*y+x] #中央像素点像素值
    if mid_pixel == 0: #找出上下左右四个方向像素点像素值
      top_pixel = data[w*(y-1)+x]
      left_pixel = data[w*y+(x-1)]
      down_pixel = data[w*(y+1)+x]
      right_pixel = data[w*y+(x+1)]
 
      #判断上下左右的黑色像素点总个数
      if top_pixel == 0:
        black_point += 1
      if left_pixel == 0:
        black_point += 1
      if down_pixel == 0:
        black_point += 1
      if right_pixel == 0:
        black_point += 1
      if black_point >= 3:
        im.putpixel((x,y),0)
      #print black_point
      black_point = 0
im.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python之pexpect实现自动交互的例子

Pexpect 是 Expect 语言的一个 Python 实现,是一个用来启动子程序,并使用正则表达式对程序输出做出特定响应,以此实现与其自动交互的 Python 模块。 Pexpec...

Python面向对象程序设计OOP入门教程【类,实例,继承,重载等】

本文实例讲述了Python面向对象程序设计OOP。分享给大家供大家参考,具体如下: 类是Python所提供的最有用的的工具之一。合理使用时,类可以大量减少开发的时间。类也在流行的Pyth...

django框架model orM使用字典作为参数,保存数据的方法分析

本文实例讲述了django框架model orM使用字典作为参数,保存数据的方法。分享给大家供大家参考,具体如下: 假设有一个字典,里面已经有了所有相关信息,现在想利用这个字典作为参数,...

Python搭建Spark分布式集群环境

Python搭建Spark分布式集群环境

前言 Apache Spark 是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark 最大的特点就是快,可比 Hadoop MapReduce 的处理速度快 100 倍。本...

使用Python将字符串转换为格式化的日期时间字符串

我正在尝试将字符串“20091229050936”转换为“2009年12月29日(UTC)” >>>import time >>>s = time...