纯python进行矩阵的相乘运算的方法示例

yipeiwu_com6年前Python基础

本文介绍了纯python进行矩阵的相乘运算的方法示例,分享给大家,具体如下:

def matrixMultiply(A, B):
  # 获取A的行数和列数
  A_row, A_col = shape(A)
  # 获取B的行数和列数
  B_row, B_col = shape(B)

  # 不能运算情况的判断
  if(A_col != B_row):
    raise ValueError

  # 最终的矩阵
  result = []

  # zip 解包后是转置后的元组,强转成list, 存入result中
  BT = [list(row) for row in zip(*B)] 

  # 开始做乘积运算 
  for A_index in range(A_row):
    # 用于记录新矩阵的每行元素
    rowItem = []
    for B_index in range(len(BT)): 
      # num 用于累加
      num = 0   
      for Br in range(len(BT[B_index])): 
        num += A[A_index][Br] * BT[B_index][Br]
      # 累加完成后,将数据存入新矩阵的行中
      rowItem.append(num) 
    result.append(rowItem) 
  return result

说明: A矩阵与B矩阵的乘法运算,最终得到新的矩阵X , 思路

  • 首先判断是否可以相乘:前提条件是A的列与B的行要相同
  • 我们可以画图理解:假如A是3行5列,B是5行2列,相乘结果是3行2列
  • 将B转置后是2行5列,我们称之为BT, 这样 A 和 BT 都是5列了
  • 则A的每行中的第 i 个元素 * BT每行中的第 i 个元素,相加构成新矩阵X的新行,循环A行,共3行,则新矩阵X就会逐步添加新行,待循环完毕,得到新矩阵X

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现简单的单变量线性回归方法

python实现简单的单变量线性回归方法

线性回归是机器学习中的基础算法之一,属于监督学习中的回归问题,算法的关键在于如何最小化代价函数,通常使用梯度下降或者正规方程(最小二乘法),在这里对算法原理不过多赘述,建议看吴恩达发布在...

python基于phantomjs实现导入图片

基于的phantomjs的自动化,会出现 1.flash不支持 2.部分基于view的按钮点不到,部分按钮是基于flash的(尤其是在于上传按钮) browser.find_ele...

linux安装Python3.4.2的操作方法

1.python安装包下载路径:https://www.python.org/downloads/ 2我下载安装包路径:https://www.python.org/ftp/python...

Python中的yield浅析

在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor)。 一、迭代器(iterator) 在Python中,for循环可以用于Pyt...

Python+PyQT5的子线程更新UI界面的实例

子线程里是不能更新UI界面的,在移动端方面。Android的UI访问是没有加锁的,多个线程可以同时访问更新操作同一个UI控件。也就是说访问UI的时候,android系统当中的控件都不是线...