Pandas分组与排序的实现

yipeiwu_com5年前Python基础

一、pandas分组

1、分组运算过程:split->apply->combine

  • 拆分:进行分组的根据
  • 应用:每个分组运行的计算规则
  • 合并:把每个分组的计算结果合并起来

2、分组函数

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, **kwargs

by: 依据哪些列进行分组,值可以是:mapping, function, label, or list of labels

3、聚合函数

4、分组聚合实例

单列分组

>>> import pandas as pd
>>> df = pd.DataFrame({'A': ['a', 'b', 'a', 'c', 'a', 'c', 'b', 'c'], 'B': [2, 8, 1, 4,
3, 2, 5, 9], 'C': [102, 98, 107, 104, 115, 87, 92, 123], 'D': [2, 98, 17, 14, 15, 7, 92,
 13]})
>>> df
  A B  C  D
0 a 2 102  2
1 b 8  98 98
2 a 1 107 17
3 c 4 104 14
4 a 3 115 15
5 c 2  87  7
6 b 5  92 92
7 c 9 123 13
>>> df.groupby(by='A').sum()
  B  C  D
A
a  6 324  34
b 13 190 190
c 15 314  34

多列分组

>>> df.groupby(by=['A','B']).sum()       ###A,B成索引
    C  D
A B
a 1 107 17
 2 102  2
 3 115 15
b 5  92 92
 8  98 98
c 2  87  7
 4 104 14
 9 123 13

多列聚合

>>> df.groupby(by=['A','B'])['C'].sum()   ###1个列
A B
a 1  107
  2  102
  3  115
b 5   92
  8   98
c 2   87
  4  104
  9  123
 
>>> df.groupby(by=['A','B'])['C','D'].sum()  ###2个列
    C  D
A B
a 1 107 17
 2 102  2
 3 115 15
b 5  92 92
 8  98 98
c 2  87  7
 4 104 14
 9 123 13

多列不同聚合方式

>>> import numpy as np
>>> df.groupby(by=['A']).agg({'C':[np.mean, 'sum'], 'D':['count',np.std]})
      C     D
     mean sum count    std
A
a 108.000000 324   3 8.144528
b  95.000000 190   2 4.242641
c 104.666667 314   3 3.785939
 
 
>>>ps: 不同列使用多个不同函数进行聚合C: mean,sum;D:count,std

返回值类型区别

方法1:agg
>>> df.groupby(by=['A']).agg({'C':[np.mean]})
      C
     mean
A
a 108.000000
b  95.000000
c 104.666667
>>> type(df.groupby(by=['A']).agg({'C':[np.mean]}))
<class 'pandas.core.frame.DataFrame'>
 
 
方法2:索引
>>> df.groupby(by=['A'])['C'].mean()
A
a  108.000000
b   95.000000
c  104.666667
Name: C, dtype: float64
>>> type(df.groupby(by=['A'])['C'].mean())
<class 'pandas.core.series.Series'>
 
 
 
总结: 两种方法结果一样,但是一个类型是DataFrame,一个为Series;有时候会用上

二、pandas排序

按索引进行降序排列

>>> df
  A B  C  D
0 a 2 102  2
1 b 8  98 98
2 a 1 107 17
3 c 4 104 14
4 a 3 115 15
5 c 2  87  7
6 b 5  92 92
7 c 9 123 13
>>> df.sort_index(ascending=False)    ### 索引
  A B  C  D
7 c 9 123 13
6 b 5  92 92
5 c 2  87  7
4 a 3 115 15
3 c 4 104 14
2 a 1 107 17
1 b 8  98 98
0 a 2 102  2

按值进行降序排列

>>> df.sort_values(by="A",ascending=False)    # 按某一列
  A B  C  D
3 c 4 104 14
5 c 2  87  7
7 c 9 123 13
1 b 8  98 98
6 b 5  92 92
0 a 2 102  2
2 a 1 107 17
4 a 3 115 15
 
>>> df.sort_values(by=["B","A"],ascending=False)  # 按2列
  A B  C  D
7 c 9 123 13
1 b 8  98 98
6 b 5  92 92
3 c 4 104 14
4 a 3 115 15
5 c 2  87  7
0 a 2 102  2
2 a 1 107 17

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用Python逐行分析文件方法

用于逐行分析文本的代码示例 fileIN = open(sys.argv[1], "r") line = fileIN.readline() while line: [some bi...

pandas.DataFrame.to_json按行转json的方法

最近需要将csv文件转成DataFrame并以json的形式展示到前台,故需要用到Dataframe的to_json方法 to_json方法默认以列名为键,列内容为值,形成{col1:[...

Python 实现字符串中指定位置插入一个字符

如下所示: str_1='wo shi yi zhi da da niu/n'str_list=list(str_1) nPos=str_list.index('/') str_li...

python实现linux下抓包并存库功能

最近项目需要抓包功能,并且抓包后要对数据包进行存库并分析。抓包想使用tcpdump来完成,但是tcpdump抓包之后只能保存为文件,我需要将其保存到数据库。想来想去shell脚本似乎不太...

python聊天程序实例代码分享

代码简单,直接看代码吧:复制代码 代码如下:import socketimport threadingimport re#import Tkinter def ser(): &...