Python使用Pandas对csv文件进行数据处理的方法

yipeiwu_com5年前Python基础

今天接到一个新的任务,要对一个140多M的csv文件进行数据处理,总共有170多万行,尝试了导入本地的MySQL数据库进行查询,结果用Navicat导入直接卡死....估计是XAMPP套装里面全默认配置的MySQL性能不给力,又尝试用R搞一下吧结果发现光加载csv文件就要3分钟左右的时间,相当不给力啊,翻了翻万能的知乎发现了Python下的一个神器包:Pandas(熊猫们?),加载这个140多M的csv文件两秒钟就搞定,后面的分类汇总等操作也都是秒开,太牛逼了!记录一下这次数据处理的过程:

使用Python3.6.4环境(对中文支持比较好),安装Pandas包

pip install pandas

基本使用:

import pandas as pd
import numpy as np #进行具体的sum,count等计算时候要用到的
df=pd.read_csv('d:/snp/nh23.csv') #这里绝对路径一定要用/,windows下也是如此,不加参数默认csv文件首行为标题行
df.head() #查看引入的csv文件前5行数据
df[“播种面积”] #查看指定列,后面跟[:5]查看前5行数据

df[“调查对象代码”].str[:6] #获取指定列前6位字符串

df["ADDR"]=df["调查对象代码"].str[:6] #将上一行处理后的6位地址码作为新列ADDR插入

gp=df.groupby(["ADDR","代码"])["播种面积"].sum() #根据ADDR和代码进行分组后对播种面积列进行sum求和计算

pv=df.pivot_table(["播种面积"],index="ADDR",columns="代码",margins=True,aggfunc=np.sum,fill_value=0) #数据透视图,对播种面积列进行汇总计算,index为行,columns为列,margins=True增加一个全部行汇总,aggfunc=np.sum透视图中对播种面积值进行sum计算,这里np是开头import的numpy as np,fill_value=0对空值进行0替换,否则没有数据会显示NaN

pv.to_csv("d:/snp/test.csv") #写入csv文件

总结

以上所述是小编给大家介绍的Python使用Pandas对csv文件进行数据处理的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

numpy 对矩阵中Nan的处理:采用平均值的方法

尽管我们可以将所有的NaN替换成0,但是由于并不知道这些值的意义,所以这样做是个下策。如果它们是开氏温度,那么将它们置成0这种处理策略就太差劲了。 下面我们用平均值来代替缺失值,平均值根...

详解Python with/as使用说明

with/as 使用open打开过文件的对with/as都已经非常熟悉,其实with/as是对try/finally的一种替代方案。 当某个对象支持一种称为"环境管理协议"的协议时,就...

pandas取出重复数据的方法

drop_duplicates为我们提供了数据去重的方法,那怎么得到哪些数据有重复呢? 实现步骤: 1、采用drop_duplicates对数据去两次重,一次将重复数据全部去除(...

python中itertools模块zip_longest函数详解

最近在看流畅的python,在看第14章节的itertools模块,对其itertools中的相关函数实现的逻辑的实现 其中在zip_longest(it_obj1, ..., it_o...

详解python开发环境搭建

详解python开发环境搭建

虽然网上有很多python开发环境搭建的文章,不过重复造轮子还是要的,记录一下过程,方便自己以后配置,也方便正在学习中的同事配置他们的环境。 1.准备好安装包 1)上python官网下载...