在Pytorch中使用样本权重(sample_weight)的正确方法

yipeiwu_com5年前Python基础

step:

1.将标签转换为one-hot形式。

2.将每一个one-hot标签中的1改为预设样本权重的值

即可在Pytorch中使用样本权重。

eg:

对于单个样本:loss = - Q * log(P),如下:

P = [0.1,0.2,0.4,0.3]
Q = [0,0,1,0]
loss = -Q * np.log(P)

增加样本权重则为loss = - Q * log(P) *sample_weight

P = [0.1,0.2,0.4,0.3]
Q = [0,0,sample_weight,0]
loss_samle_weight = -Q * np.log(P)

在pytorch中示例程序

train_data = np.load(open('train_data.npy','rb'))
train_labels = []
for i in range(8):
  train_labels += [i] *100
train_labels = np.array(train_labels)
train_labels = to_categorical(train_labels).astype("float32")
sample_1 = [random.random() for i in range(len(train_data))]
for i in range(len(train_data)):
  floor = i / 100
  train_labels[i][floor] = sample_1[i]
train_data = torch.from_numpy(train_data) 
train_labels = torch.from_numpy(train_labels) 
dataset = dataf.TensorDataset(train_data,train_labels) 
trainloader = dataf.DataLoader(dataset, batch_size=batch_size, shuffle=True)

对应one-target的多分类交叉熵损失函数如下:

def my_loss(outputs, targets):
  
  output2 = outputs - torch.max(outputs, 1, True)[0]
 
 
  P = torch.exp(output2) / torch.sum(torch.exp(output2), 1,True) + 1e-10
 
 
  loss = -torch.mean(targets * torch.log(P))
 
 
  return loss

以上这篇在Pytorch中使用样本权重(sample_weight)的正确方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中摘要算法MD5,SHA1简介及应用实例代码

关于算法的学习,小编觉得编程语言中的算法大都有一些相通的地方,主要的方面一是了解这一算法能用来干什么,另一方面,学习它在这类编程语言中怎么实现。 摘要算法又称哈希算法、散列算法。它通过一...

Python调用.NET库的方法步骤

开发背景是这样的:整个项目中使用很多台摩托罗拉的RFID读卡器,我要为这些读卡器写一个管理程序,判断是否有RFID标签进入或离开某个区域。用户提供给我的,除了设备,就是一个.net的动态...

使用Fabric自动化部署Django项目的实现

文中涉及的示例代码,已同步更新到HelloGitHub-Team 仓库 在上一篇教程中,我们通过手工方式将代码部署到了服务器。整个过程涉及到十几条命令,输了 N 个字符。一旦我们本地的代...

浅谈Python中的bs4基础

安装 在命令提示符框中直接输入pip install beautifulsoup4 介绍 beautifulsoup是python的一个第三方库,和xpath一样,都是用来解析html数...

python assert的用处示例详解

使用assert断言是学习python一个非常好的习惯,python assert 断言句语格式及用法很简单。在没完善一个程序之前,我们不知道程序在哪里会出错,与其让它在运行最崩溃,不如...