python 数据提取及拆分的实现代码

yipeiwu_com6年前Python基础

K线数据提取

#### 原有数据集如下:

依据原有数据集格式,按要求生成新表:

1、每分钟的close数据的第一条、最后一条、最大值及最小值,

2、每分钟vol数据的增长量(每分钟vol的最后一条数据减第一条数据)

3、汇总这些信息生成一个新表

(字段名:[‘time',‘open',‘close',‘high',‘low',‘vol'])

import pandas as pd 
import time 
start=time.time()
df=pd.read_csv('data.csv')
df=df.drop('id',axis=1)    #删除id列 
df1=pd.DataFrame(columns=['time','open','close','high','low','vol'])#新建目标数据表

for i in df.groupby('time'):   #按时间分组
  new_df=pd.DataFrame(columns=['time','open','close','high','low','vol']) #新建空表用于临时转存要求数据
  new_df.time=i[1].time[0:1]  #取每组时间为新表时间
  new_df.open=i[1].close[0:1]  #取每组第一个close数据为新表open数据
  new_df.close=i[1]['close'].iloc[-1]  #取每组最后一个close数据为新表close数据
  new_df.high=i[1]['close'].max()  #取每组close数据最大值为新表hige数据
  new_df.low=i[1]['close'].min()  #取每组close数据最小值为新表low数据
  new_df.vol=i[1]['vol'].iloc[-1] - i[1]['vol'].iloc[0] #用每组vol数据最大值减去最小值为新表vol数据
  df1=pd.concat([new_df,df1],axis=0)  #纵向合并数据到目标数据表
  
df2=df1.sort_values('time')  #按time列值进行排序
df2.reset_index(inplace=True, drop=True)  #重置行索引
print(df2)  #打印目标数据表
stop=time.time()  #查看耗时
print('共计耗时:{}秒'.format(stop-start))

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 列表,数组,矩阵两两转换tolist()的实例

通过代码熟悉过程: # -*- coding: utf-8 -*- from numpy import * a1 =[[1,2,3],[4,5,6]] #列表 print('a1 :...

利用Python批量提取Win10锁屏壁纸实战教程

利用Python批量提取Win10锁屏壁纸实战教程

前言 相信使用Win10的朋友会发现,每次开机锁屏界面都会有不一样的漂亮图片,这些图片通常选自优秀的摄影作品,十分精美。 但是由于系统会自动更换这些图片,所以就算再好看的图片,也许下次...

python字符串切割:str.split()与re.split()的对比分析

1、str.split不支持正则及多个切割符号,不感知空格的数量,比如用空格切割,会出现下面情况。 >>> s1="aa bb cc" >>> s...

python中matplotlib条件背景颜色的实现

如何根据图表中没有的变量更改折线图的背景颜色?例如,如果我有以下数据帧: import numpy as np import pandas as pd dates = pd.dat...

python调用tcpdump抓包过滤的方法

python调用tcpdump抓包过滤的方法

本文实例为大家分享了python调用tcpdump抓包过滤的具体代码,供大家参考,具体内容如下 之前在linux用python脚本写一个抓包分析小工具,实在不想用什么libpcap、py...