pytorch多GPU并行运算的实现

yipeiwu_com6年前Python基础

Pytorch多GPU运行

设置可用GPU环境变量。例如,使用0号和1号GPU'

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行

    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      model = nn.DataParallel(model)

将模型参数设置使用GPU运行

    if torch.cuda.is_available():
      model.cuda()

踩坑记录

在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节

pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

参考

https://www.zhihu.com/question/67726969

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现计算器功能

python实现计算器功能

本文实例为大家分享了python计算器的具体代码,供大家参考,具体内容如下 主要用到的工具是Python中的Tkinter库 比较简单 直接上图形界面和代码 引用Tkinter库...

Python递归遍历列表及输出的实现方法

本文实例讲述了Python递归遍历列表及输出的实现方法。分享给大家供大家参考。具体实现方法如下: def dp(s): if isinstance(s,(int,str)):...

Python中矩阵创建和矩阵运算方法

Python中矩阵创建和矩阵运算方法

矩阵创建 1、from numpyimport *; a1=array([1,2,3]) a2=mat(a1) 矩阵与方块列表的区别如下: 2、data2=mat(ones((2,4)...

TensorFlow查看输入节点和输出节点名称方式

TensorFlow 定义输入节点名称input_name: with tf.name_scope('input'): bottleneck_input = tf.place...

Python将json文件写入ES数据库的方法

Python将json文件写入ES数据库的方法

1、安装Elasticsearch数据库 PS:在此之前需首先安装Java SE环境 下载elasticsearch-6.5.2版本,进入/elasticsearch-6.5.2/bin...