Python 进程操作之进程间通过队列共享数据,队列Queue简单示例

yipeiwu_com6年前Python基础

本文实例讲述了Python 进程操作之进程间通过队列共享数据,队列Queue。分享给大家供大家参考,具体如下:

队列中的数据是放在内存中的,可以通过分布式缓存redis优化队列。

demo.py(进程通过队列共享数据):

import multiprocessing
def download_from_web(q):
  """下载数据"""
  # 模拟从网上下载的数据
  data = [11, 22, 33, 44]
  # 向队列中写入数据
  for temp in data:
    q.put(temp) # 队列中写数据,队列满了会阻塞。 put_nowait() 队列满了会抛异常
  print("---下载器已经下载完了数据并且存入到队列中----")
def analysis_data(q):
  """数据处理"""
  waitting_analysis_data = list()
  # 从队列中获取数据
  while True:
    data = q.get() # 队列中读数据,队列空了会阻塞。 get_nowait() 队列空了会抛异常
    waitting_analysis_data.append(data)
    if q.empty(): # 队列是否为空。 q.full() 队列是否满了。
      break
  # 模拟数据处理
  print(waitting_analysis_data)
def main():
  # 1. 创建一个队列 (先进先出)
  q = multiprocessing.Queue(10) # 最多放10个数据。 如果不指定长度,默认最大(和硬件相关)
  # 2. 创建多个进程,将队列的引用当做实参进行传递
  p1 = multiprocessing.Process(target=download_from_web, args=(q,))
  p2 = multiprocessing.Process(target=analysis_data, args=(q,))
  p1.start()
  p2.start()
if __name__ == "__main__":
  main()

运行结果:

---下载器已经下载完了数据并且存入到队列中----
[11, 22, 33, 44]

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

关于你不想知道的所有Python3 unicode特性

我的读者知道我是一个喜欢痛骂Python3 unicode的人。这次也不例外。我将会告诉你用unicode有多痛苦和为什么我不能闭嘴。我花了两周时间研究Python3,我需要发泄我的失望...

简单的Apache+FastCGI+Django配置指南

在Apache和FastCGI上使用Django,你需要安装和配置Apache,并且安装mod_fastcgi。 请参见Apache和mod_fastcgi文档: http://www....

Python 条件判断的缩写方法

return (1==1) ? "is easy" : "my god" //C...

pandas groupby 分组取每组的前几行记录方法

直接上例子。 import pandas as pd df = pd.DataFrame({'class':['a','a','b','b','a','a','b','c','c'...

python学习之matplotlib绘制散点图实例

python学习之matplotlib绘制散点图实例

要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.p...