Python Celery多队列配置代码实例

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python Celery多队列配置代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

Celery官方文档

项目结构

/proj
-__init__
-app.py            #实例化celery对象
-celeryconfig.py        #celery的配置文件
-tasks.py           #celery编写任务文件

app.py

#coding:utf-8
from __future__ import absolute_import
from celery import Celery

app = Celery('proj', include=['proj.tasks'])   #实例化celery对象

app.config_from_object('proj.celeryconfig')   #引入配置文件

if __name__ == '__main__':            
  app.start()
  • proj参数为celery的名字
  • include参数为启动时导入的模块列表

tasks.py

#coding:utf-8
from __future__ import absolute_import

from proj.app import app
@app.task()
def add(x, y):
  return x + y

celeryconfig.py

#coding:utf-8
from kombu import Queue

BROKER_URL = 'amqp://guest:guest@127.0.0.1:5672//' # 使用RabbitMQ作为消息代理


CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' # 把任务结果存在了Redis

CELERY_TASK_SERIALIZER = 'msgpack' # 任务序列化和反序列化使用msgpack方案

CELERY_RESULT_SERIALIZER = 'json' # 读取任务结果一般性能要求不高,所以使用了可读性更好的JSON

CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间,不建议直接写86400,应该让这样的magic数字表述更明显

CELERY_ACCEPT_CONTENT = ['json', 'msgpack'] # 指定接受的内容类型

CELERY_QUEUES = (  #设置add队列,绑定routing_key
  Queue('add', routing_key='xue.add'),
)


CELERY_ROUTES = {  #projq.tasks.add这个任务进去add队列并routeing_key为xue.add 
  'projq.tasks.add': { 
    'queue': 'add',
    'routing_key': 'xue.add',
  }
}
  • CELERY_ACCEPT_CONTENT的类型msgpack为是一种比json更小更快的类型,如果用需要安装相对应的包。
  • CELERY_QUEUES设置一个指定routing_key的队列,这个名字可以任意指定。
  • CELERY_ROUTES设置路由,对指定的任务名,指定对应的队列和routing_key,注意,这里的routing_key需要和上面参数的一致。

启动

在proj的上层目录输入

celery -A proj.app worker -Q add -l info

proj.tasks.add为任务名称,也就是在CELERY_ROUTES设置的那个名称

add是设置的queue,key=xue.add是设置的routing_key

发布任务

from proj.tasks import add
add.delay(2,3)

多队列中需要修改的地方

CELERY_QUEUES = (  #设置add队列,绑定routing_key
  Queue('add', routing_key='xue.add'),
)


CELERY_ROUTES = {  #projq.tasks.add这个任务进去add队列并routeing_key为xue.add 
  'projq.tasks.add': { 
    'queue': 'add',
    'routing_key': 'xue.add',
  }

配置两个队列

# 配置队列
CELERY_QUEUES = (
  Queue('default', routing_key='default'),
  Queue('队列1', routing_key='key1'),
  Queue('队列2', routing_key='key2'),
)
# 路由(哪个任务放入哪个队列)
CELERY_ROUTES = {
  '任务1': {'queue': '队列1', 'routing_key': 'key1'},
  '任务2': {'queue': '对列2', 'routing_key': 'key2'},
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

手把手教你python实现SVM算法

手把手教你python实现SVM算法

什么是机器学习 (Machine Learning)       机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能...

python用线性回归预测股票价格的实现代码

python用线性回归预测股票价格的实现代码

线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。 线性回归是一...

python 捕获shell脚本的输出结果实例

import subprocess output =Popen(["mycmd","myarg"], stdout=PIPE).communicate()[0] import subp...

Flask核心机制之上下文源码剖析

一、前言 了解过flask的python开发者想必都知道flask中核心机制莫过于上下文管理,当然学习flask如果不了解其中的处理流程,可能在很多问题上不能得到解决,当然我在写本篇文章...

讲解Python中运算符使用时的优先级

讲解Python中运算符使用时的优先级

 运算符优先级来确定条件的表达式中的分组。这会影响一个表达式如何计算。某些运算符的优先级高于其他;例如,乘法运算符的优先级比加法运算更高。 例如x=7 + 3* 2;这里,x被...