基于python cut和qcut的用法及区别详解

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧:

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
from numpy import nan as NA
from matplotlib import pyplot as plt
ages = [20,22,25,27,21,23,37,31,61,45,41,32]
#将所有的ages进行分组
bins = [18,25,35,60,100]
#使用pandas中的cut对年龄数据进行分组
cats = pd.cut(ages,bins)
#print(cats)
#调用pd.value_counts方法统计每个区间的个数
number=pd.value_counts(cats)
#print(pd.value_counts(cats))
#显示第几个区间index值
index=pd.cut(ages,bins).codes
#print(index)
#为分类出来的每一组年龄加上标签
group_names = ["Youth","YouthAdult","MiddleAged","Senior"]
personType=pd.cut(ages,bins,labels=group_names)
#print(personType)
plt.hist(personType)
#plt.show()
#cut和qcut的用法
data=[1,2,3,4,5,6,7,8,9,10]
result=pd.qcut(data,4)
print(' ',result)##qcut会将10个数据进行排序,然后再将data数据均分成四组
#统计落在每个区间的元素个数
print('dasdasdasdasdas:  ',pd.value_counts(result))
#qcut : 跟cut一样也可以自定义分位数(0到1之间的数值,包括端点)
results=pd.qcut(data,[0,0.1,0.5,0.9,1])
print('results:  ',results)
import numpy as np
import pandas as pd
data = np.random.rand(20)
print(data)
#用cut函数将一组数据分割成n份
#cut函数分割的方式:数据里的(最大值-最小值)/n=每个区间的间距
#利用数据中最大值和最小值的差除以分组数作为每一组数据的区间范围的差值
result = pd.cut(data,4,precision=2) #precision保留小数点的有效位数
print(result)
res_data=pd.value_counts(result)
print(res_data)

以上这篇基于python cut和qcut的用法及区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python数据报表之Excel操作模块用法分析

Python数据报表之Excel操作模块用法分析

本文实例讲述了Python数据报表之Excel操作模块用法。分享给大家供大家参考,具体如下: 一 点睛 Excel是当今最流行的电子表格处理软件,支持丰富的计算函数及图表,在系统运营方面...

Pandas+Matplotlib 箱式图异常值分析示例

我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- import pandas as pd import matplotlib.pyplot as...

python简单猜数游戏实例

本文实例讲述了python简单猜数游戏。分享给大家供大家参考。具体实现方法如下: #!/usr/bin/env python import random number = rando...

使用Python读取二进制文件的实例讲解

使用Python读取二进制文件的实例讲解

目标:目标文件为一个float32型存储的二进制文件,按列优先方式存储。本文使用Python读取该二进制文件并使用matplotlib.pyplot相关工具画出图像 工具:Python3...

python求质数的3种方法

本文为大家分享了多种方法求质数python实现代码,供大家参考,具体内容如下 题目要求是求所有小于n的质数的个数。 求质数方法1: 穷举法: 根据定义循环判断该数除以比他小的...