python实现数据清洗(缺失值与异常值处理)

yipeiwu_com6年前Python基础

1。 将本地sql文件写入mysql数据库

本文写入的是python数据库的taob表

source [本地文件]

其中总数据为9616行,列分别为title,link,price,comment

2。使用python链接并读取数据

查看数据概括

#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select * from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
print(data.describe())

说明数据的导入是正确的,简单的分析发现问题并不是这么简单,因为comment均值562可能偏大,最大评论数454037也可能出现错误,price价格为0也不太可能出现。

 price    comment
count 9616.00000  9616.000000
mean   64.49324   562.239601
std   176.10901  6078.909643
min    0.00000    0.000000
25%   20.00000   16.000000
50%   36.00000   58.000000
75%   66.00000   205.000000
max  7940.00000 454037.000000

3。缺失值处理

将价格为0的值设置为中位数36

#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select * from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据

data['price'][data['price']==0]=None
x = 0
for i in data.columns:
  for j in range(len(data)):
    if (data[i].isnull()) [j]:
      data[i][j]='36'
      x+=1
print(x)
#44

结果显示修改了44行的数据。

4。异常值处理

#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select * from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#缺失值处理
data['price'][data['price']==0]=None
x = 0
for i in data.columns:
  for j in range(len(data)):
    if (data[i].isnull()) [j]:
      data[i][j]='36'
      x+=1
print(x)
#异常值处理
#绘制散点图,价格为横轴
data1 = data.T#转置
price = data1.values[2]
comment = data1.values[3]
plt.plot(price,comment,'o')
plt.show()
#print(price)

结果如下图,价格为0左右时comment很大可能为异常值,comments为0时,价格极大这个有可能的。

接下来处理评论数异常值,假设异常值分割线设置为20w,

#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select * from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#缺失值处理
data['price'][data['price']==0]=None
x = 0
for i in data.columns:
  for j in range(len(data)):
    if (data[i].isnull()) [j]:
      data[i][j]='36'
      x+=1
print(x)
#异常值处理
da = data.values#重新赋值data
#异常值处理,将commments大于200000的数据comments设置为58
cont_clou = len(da)#获取行数
#遍历数据进行处理
for i in range(0,cont_clou):
  if(data.values[i][3]>200000):
    #print(data.values[i][3])
    da[i][3]='58'
    #print(da[i][3])

#绘制散点图,价格为横轴
data1 = da.T#转置
price = data1[2]
comment = data1[3]
plt.plot(price,comment,'o')
plt.xlabel('price')
plt.ylabel('comments')
plt.show()

处理后的输出结果为:

以上这篇python实现数据清洗(缺失值与异常值处理)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django集成百度富文本编辑器uEditor攻略

首先从 ueEditor官网 下载最新版本的包,目前官网上提供了ASP、.NET、PHP、JSP版本的,django版本只有一个第三方个人开发的,但看上出配置起来稍微复杂一点。 这里不介...

Python中最大最小赋值小技巧(分享)

码代码时,有时候需要根据比较大小分别赋值: import random seq = [random.randint(0, 1000) for _ in range(100)] #方法...

Python分布式进程中你会遇到的问题解析

Python分布式进程中你会遇到的问题解析

小惊大怪 你是不是在用Python3或者在windows系统上编程?最重要的是你对进程和线程不是很清楚?那么恭喜你,在python分布式进程中,会有坑等着你去挖。。。(h...

快速解决pyqt5窗体关闭后子线程不同时退出的问题

用pyqt5设计了一个主窗体,在窗体运行时需要把一个无限循环放在一个线程去工作。运行后,发现通过鼠标按主窗体的关闭按键关闭主创体后,线程不会自动终止,依然在运行。尽管对我的使用场景来说,...

Flask框架的学习指南之制作简单blog系统

Flask框架的学习指南之制作简单blog系统

之前写了一篇flask开发环境搭建,今天继续,进行一个实战小项目-blog系统。 blog系统很简单,只有一个页面,然后麻雀虽小五脏俱全。这里目的不是为了做项目而做项目,这篇文章本意是通...