python基于plotly实现画饼状图代码实例

yipeiwu_com6年前Python基础

这篇文章主要介绍了python基于plotly实现画饼状图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码

import pandas as pd
import numpy as np
import plotly.plotly as py
import plotly.graph_objs as go

path = '/home/v-gazh/PycharmProjects/us_data/limit_code.csv'

df = pd.read_csv(path)
df.set_index(['code'], inplace=True)

# ST 占比
total_count = len(df)
st_count = len(df[df['isST']==1])
print(f'禁投池总数:{total_count}')
print(f'禁投池中ST个数:{st_count}') # f'禁投池中ST个数:{}'

# 成分股占比
sz50_count = len(df[df['isSz50']==1])
print(f'禁投池中上证50个数:{sz50_count}')
hs300_count = len(df[df['isHs300']==1])
print(f'禁投池中沪深300个数:{hs300_count}')
zz500_count = len(df[df['isZz500']==1])
print(f'禁投池中中证500个数:{zz500_count}')

# 退市占比
outdate_count = len(df['outDate'].dropna())
print(f'禁投池中退市股票个数:{outdate_count}')

# 非股票
not_stock = len(df[df['type']!=1])
print(f'禁投池中非股票个数:{not_stock} 【SZ006415 为基金:F006415 | SZ000000 代码错误】')

# 次新股
delta_df = pd.DataFrame((pd.to_datetime(df['date']) - pd.to_datetime(df['ipoDate'])))
new_stock = len(delta_df[delta_df[0] < pd.Timedelta('365 days')]) # 上市不满一年为次新股 
print(f'禁投池中次新股个数:{new_stock}')

# 市值小于30亿的股票
maketValue = len(df[df['maketValue'] < 3000000000])
print(f'市值小于30亿股票个数:{maketValue}')

# 画图
labels = ['股票总数', 'ST股票', '深证50', '沪深300', '中证500', '退市股票', '非股票', '次新股', '小市值']
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

trace = go.Pie(labels=labels, values=values,textfont=dict(size=15),)
py.iplot([trace], filename='basic_pie_chart')

注:上面代码中,起主要作用的主要是

# 画图
labels = ['股票总数', 'ST股票', '深证50', '沪深300', '中证500', '退市股票', '非股票', '次新股', '小市值']
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

trace = go.Pie(labels=labels, values=values,textfont=dict(size=15),)
py.iplot([trace], filename='basic_pie_chart')
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

values 列表里的内容为int数值,对应上面的labels

图示

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中ConfigParse模块的用法

本文实例讲述了python中ConfigParse模块的用法,分享给大家供大家参考。具体方法如下: 写配置一般用ConfigParse.RawConfigParse类 读配置用Conf...

Centos Python2 升级到Python3的简单实现

1. 从Python官网到获取Python3的包, 切换到目录/usr/local/src #wget https://www.python.org/ftp/python/3.5.1...

python实现DEM数据的阴影生成的方法

python实现DEM数据的阴影生成的方法

相关的依赖库在我的github网站上 首先贴出代码: import solar from gradient import * from shadows import * import...

Python实现模拟分割大文件及多线程处理的方法

本文实例讲述了Python实现模拟分割大文件及多线程处理的方法。分享给大家供大家参考,具体如下: #!/usr/bin/env python #--*-- coding:utf-8...

Python面向对象之继承和组合用法实例分析

本文实例讲述了Python面向对象之继承和组合用法。分享给大家供大家参考,具体如下: 面向对象的组合用法 软件重用的重要方式除了继承之外还有另外一种方式,即:组合 组合指的是,在一个类中...