Pytorch 多维数组运算过程的索引处理方式

yipeiwu_com5年前Python基础

背景:对 python 不熟悉,能看懂代码,也能实现一些简单的功能,但是对 python 的核心思想和编程技巧不熟,所以使 Pytorch 写 loss 的时候遇到很多麻烦,尤其是在 batch_size > 1 的时候,做矩阵乘法之类的运算会觉得特别不顺手。

所幸,在边查边写的过程中,理解了 python 中多维运算的实现规则。

1、python 的基本索引规则

从 0 开始

对于给定的范围,如 b = a[m:n], 那么 b 为由 (n-m)个数据组成的新数组,由 a[m],a[m+1],...,a[n-1] 构成。(若 n<m, 得到空)

2、单个 tensor 运算,使用 dim 参数

torch 中对 tensor 的操作方法,若不加 dim 参数表示对整体的 tensr 进行操作,若增加 dim 参则表示按维操作。

例:

a = [[1,2],[3,4],[5,6]] (torch.tensor)

  torch.mean(a) => 3.5

  torch.mean(a,dim=0) => [1.5, 3.5, 5.5]

  torch.mean(a,dim=1) => [[3],[4]]

  torch.mean(a,dim=0) => [3,4]

  torch.mean(a,dim=1) => [1.5, 3.5, 5.5] 

注: torch.mean() 是一个降维的操作,所以不会出现在取均值后保持跟原 Tensor 同维的情况。 dim 参数存在时降一维,不存在时得到的是整个 Tensor 的均值。

3、两个 tensor 运算,构造对应形状

以乘法为例:

3.1 矩阵乘向量

a = [[1,2],[3,4],[5,6]]

b = [1,1]

计算乘法 c = a@b

若 a 拓展为 (N,3,2) N 为 batch_size, 计算 c2 = a@b

若 a,b 同时拓展, 变成(N, 2),那么需要做一个变换 b = b.view(N,2,1),计算 c3 = a@b

3.2 矩阵乘矩阵

a = [[1,2],[3,4],[5,6]]

b =[ [1,1],[1,1]]

计算乘法 c = a@b

若 a 拓展为 (N,3,2) N 为 batch_size, 计算 c2 = a@b

若 a,b 同时拓展, 变成(N, 2, 2),计算 c3 = a@b

以上这篇Pytorch 多维数组运算过程的索引处理方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单的连接MySQL与Python的Bottle框架的方法

Python关于mySQL的连接插件众多,Bottle下也有人专门开发的插件:bottle-mysql具体使用方法见官方,总共感觉其用法限制太多,其使用起来不方便,最适合的当然是,myS...

Python基于Floyd算法求解最短路径距离问题实例详解

本文实例讲述了Python基于Floyd算法求解最短路径距离问题。分享给大家供大家参考,具体如下: Floyd算法和Dijkstra算法,相信大家都不陌生,在最短路径距离的求解中应该算得...

Python 详解基本语法_函数_返回值

Python 详解基本语法 概要: 函数的返回值是函数重要的组成部分。函数的根本在于实现程序的部分功能,所以很多时候我们需要将函数执行后的结果返回给程序再由程序作出进一步的操作。可以说是...

Python利用ElementTree模块处理XML的方法详解

前言 最近因为工作的需要,在使用 Python 来发送 SOAP 请求以测试 Web Service 的性能,由于 SOAP 是基于 XML 的,故免不了需要使用 python 来处理...

selenium设置proxy、headers的方法(phantomjs、Chrome、Firefox)

本文介绍了selenium设置proxy、headers的方法,把phantomjs、Chrome、Firefox几个浏览器的设置方法都总结一下,分享给大家,也给自己留个笔记 phan...