Pytorch之保存读取模型实例

yipeiwu_com6年前Python基础

pytorch保存数据

pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式。而pth文件是python中存储文件的常用格式。而在keras中则是使用.h5文件。

# 保存模型示例代码
print('===> Saving models...')
state = {
  'state': model.state_dict(),
  'epoch': epoch          # 将epoch一并保存
}
if not os.path.isdir('checkpoint'):
  os.mkdir('checkpoint')
torch.save(state, './checkpoint/autoencoder.t7')

保存用到torch.save函数,注意该函数第一个参数可以是单个值也可以是字典,字典可以存更多你要保存的参数(不仅仅是权重数据)。

pytorch读取数据

pytorch读取数据使用的方法和我们平时使用预训练参数所用的方法是一样的,都是使用load_state_dict这个函数。

下方的代码和上方的保存代码可以搭配使用。

print('===> Try resume from checkpoint')
if os.path.isdir('checkpoint'):
  try:
    checkpoint = torch.load('./checkpoint/autoencoder.t7')
    model.load_state_dict(checkpoint['state'])    # 从字典中依次读取
    start_epoch = checkpoint['epoch']
    print('===> Load last checkpoint data')
  except FileNotFoundError:
    print('Can\'t found autoencoder.t7')
else:
  start_epoch = 0
  print('===> Start from scratch')

以上是pytorch读取的方法汇总,但是要注意,在使用官方的预处理模型进行读取时,一般使用的格式是pth,使用官方的模型读取命令会检查你模型的格式是否正确,如果不是使用官方提供模型通过下面的函数强行读取模型(将其他模型例如caffe模型转过来的模型放到指定目录下)会发生错误。

def vgg19(pretrained=False, **kwargs):
  """VGG 19-layer model (configuration "E")
 
  Args:
    pretrained (bool): If True, returns a model pre-trained on ImageNet
  """
  model = VGG(make_layers(cfg['E']), **kwargs)
  if pretrained:
    model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
  return model

假如我们有从caffe模型转过来的pytorch模型([0-255,BGR]),我们可以使用:

model_dir = '自己的模型地址'
model = VGG()
model.load_state_dict(torch.load(model_dir + 'vgg_conv.pth'))

也就是pytorch的读取函数进行读取即可。

以上这篇Pytorch之保存读取模型实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PyCharm搭建Spark开发环境实现第一个pyspark程序

PyCharm搭建Spark开发环境实现第一个pyspark程序

一, PyCharm搭建Spark开发环境 Windows7, Java1.8.0_74, Scala 2.12.6, Spark 2.2.1, Hadoop2.7.6 通常情况下,Sp...

python打开网页和暂停实例

本文实例讲述了python打开网页和暂停的方法。分享给大家供大家参考。 具体实现代码如下: import webbrowser import os webbrowser.open_...

Django项目开发中cookies和session的常用操作分析

本文实例讲述了Django项目开发中cookies和session的常用操作。分享给大家供大家参考,具体如下: COOKIES操作 检查cookies是否存在: request.CO...

Python实现隐马尔可夫模型的前向后向算法的示例代码

本篇文章对隐马尔可夫模型的前向和后向算法进行了Python实现,并且每种算法都给出了循环和递归两种方式的实现。 前向算法Python实现 循环方式 import numpy as...

Django异步任务之Celery的基本使用

Celery 许多Django应用需要执行异步任务, 以便不耽误http request的执行. 我们也可以选择许多方法来完成异步任务, 使用Celery是一个比较好的选择, 因为Cel...