pytorch中tensor张量数据类型的转化方式

yipeiwu_com5年前Python基础

1.tensor张量与numpy相互转换

tensor ----->numpy

import torch
a=torch.ones([2,5])

tensor([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]])
# **********************************    
b=a.numpy()

array([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]], dtype=float32)
numpy ----->tensor

import numpy as np
a=np.ones([2,5])

array([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]])
# **********************************    
b=torch.from_numpy(a)

tensor([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]], dtype=torch.float64)

2.tensor张量与list相互转换

tensor—>list

a=torch.ones([1,5])

tensor([[1., 1., 1., 1., 1.]])
# ***********************************
b=a.tolist()

[[1.0, 1.0, 1.0, 1.0, 1.0]]



list—>tensor

a=list(range(1,6))

[1, 2, 3, 4, 5]
# **********************************
b=torch.tensor(a)

tensor([1, 2, 3, 4, 5])

3.tensor张量见类型转换

构建一个新的张量,你要转变成不同的类型只需要根据自己的需求选择即可

tensor = torch.Tensor(3, 5)

# torch.long() 将tensor投射为long类型
newtensor = tensor.long()

# torch.half()将tensor投射为半精度浮点类型
newtensor = tensor.half()

# torch.int()将该tensor投射为int类型
newtensor = tensor.int()

# torch.double()将该tensor投射为double类型
newtensor = tensor.double()

# torch.float()将该tensor投射为float类型
newtensor = tensor.float()

# torch.char()将该tensor投射为char类型
newtensor = tensor.char()

# torch.byte()将该tensor投射为byte类型
newtensor = tensor.byte()

# torch.short()将该tensor投射为short类型
newtensor = tensor.short()

4.type_as() 将张量转换成指定类型张量

>>> a=torch.Tensor(2,5)
>>> a
tensor([[1.9431e-19, 4.8613e+30, 1.4603e-19, 2.0704e-19, 4.7429e+30],
    [1.6530e+19, 1.8254e+31, 1.4607e-19, 6.8801e+16, 1.8370e+25]])
>>> b=torch.IntTensor(1,2)
>>> b
tensor([[16843009,    1]], dtype=torch.int32)
>>> a.type_as(b)
tensor([[     0, -2147483648,      0,      0, -2147483648],
    [-2147483648, -2147483648,      0, -2147483648, -2147483648]],
    dtype=torch.int32)
>>> a
tensor([[1.9431e-19, 4.8613e+30, 1.4603e-19, 2.0704e-19, 4.7429e+30],
    [1.6530e+19, 1.8254e+31, 1.4607e-19, 6.8801e+16, 1.8370e+25]])

以上这篇pytorch中tensor张量数据类型的转化方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pandas 缺失值与空值处理的实现方法

pandas 缺失值与空值处理的实现方法

1.相关函数 df.dropna() df.fillna() df.isnull() df.isna() 2.相关概念 空值:在pandas中的空值是"" 缺失值:在...

Python selenium文件上传方法汇总

文件上传是所有UI自动化测试都要面对的一个头疼问题,今天博主在这里给大家分享下自己处理文件上传的经验,希望能够帮助到广大被文件上传坑住的seleniumer。 首先,我们要区分出上传按钮...

Python/Django后端使用PIL Image生成头像缩略图

本文实例为大家分享了Python/Django后端使用PIL Image生成头像缩略图的具体代码,供大家参考,具体内容如下 import os from django.views.g...

使用Python中的greenlet包实现并发编程的入门教程

1   动机 greenlet 包是 Stackless 的副产品,其将微线程称为 “tasklet” 。tasklet运行在伪并发中,使用channel进行同步数据...

在Python中使用matplotlib模块绘制数据图的示例

在Python中使用matplotlib模块绘制数据图的示例

 matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序...