python 实现从高分辨图像上抠取图像块

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧!

#coding=utf-8
import cv2
import numpy as np
import os
# 程序实现功能:
# 根据patch在高分辨率图像上的索引值,crop出对应区域的图像
# 并验证程序的正确性
'''
对于当前输入的3328*3328的高分辨率特征图,首先resize到640*640
然后根据当前的patch文件名(包含了patch在高分辨率图像上的行索引和列索引)
这个索引值是将高分辨率图像划分成多个没有overlap的256*256的图像块之后的行索引和列索引
行索引range(1,11),列索引range(0,12)
3328=13*256
'''

index='IDRiD_03_3_12.jpg'
raw_img_path='F:\\2\\eye_seg_con\\eye_seg\\joint_data\\raw_image\\train'
patches_path='F:\\2\\eye_seg_con\\eye_seg\\joint_data\\patches\\train'
true_patches=cv2.imread(os.path.join(patches_path,index))[:,:,::-1]

print(os.path.join(raw_img_path,index.split('_')[0]+index.split('_')[1]+'.jpg'))

hr_img=cv2.imread(os.path.join(raw_img_path,index.split('_')[0]+'_'+index.split('_')[1]+'.jpg'))[:,:,::-1]
hr_img=cv2.resize(hr_img,(640,640))# hr_img RGB

'''
640/13=49.23076923076923 记作unit
将640*640的区域平均划分成13*13份,每一份的像素点大小是unit*unit
然后将对应位置(取整)的图像块抠出来,resize成256*256大小
'''
unit=640/13
patch_row_num = int(index[:-4].split('_')[2])
patch_col_num = int(index[:-4].split('_')[3])

row_start=round(patch_row_num*unit)
row_end=round((patch_row_num+1)*unit)
col_start=round(patch_col_num*unit)
col_end=round((patch_col_num+1)*unit)

my_patch=hr_img[row_start:row_end,col_start:col_end,:]
my_patch=cv2.resize(my_patch,(256,256))
my_patch=np.array(my_patch,dtype=np.uint8)

cv2.imshow('true_patches',true_patches[:,:,::-1])
cv2.waitKey(0)

cv2.imshow('my_patch',my_patch[:,:,::-1])
cv2.waitKey(0)

# # hr_img RGB
#
# # cv2.imshow('1',hr_img[:,:,::-1])
# # cv2.waitKey(0)
#
# hr_img2=cv2.imread(os.path.join(raw_img_path,index.split('_')[0]+'_'+index.split('_')[1]+'.jpg'))
# hr_img2=cv2.resize(hr_img2,(640,640))[:,:,::-1]# hr_img2 RGB
# # cv2.imshow('2',hr_img2[:,:,::-1])
# # cv2.waitKey(0)
#
# print(np.sum(hr_img2-hr_img))# 0

# 结论:
# 对于cv2.resize函数而言,无论是先进行BGR的通道转换,再resize,还是先进行resize,再进行BGR通道转换
# 所得到的图像是相同的,即resize和通道维度的变换可交换顺序
# 实际上resize只发生在spatial dimension,而通道变换发生在channels dimension,所以空间维度上的插值变换
# 是在每个通道维度上独立进行的。
# 另外,对于计算机而言,所读取到的彩色图像就是H*W*3的矩阵而已,它本身是没有办法区分究竟是BGR格式还是RGB格式的

以上这篇python 实现从高分辨图像上抠取图像块就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python面向对象程序设计多继承和多态用法示例

Python面向对象程序设计多继承和多态用法示例

本文实例讲述了Python面向对象程序设计多继承和多态用法。分享给大家供大家参考,具体如下: 多继承 就是一个子类继承多个父类: 多继承的例子,如下: # -*- coding:u...

python中的变量如何开辟内存

python中的变量如何开辟内存

python下的变量 不需要预先声明变量的类型,变量的类型和值在赋值的那一刻被初始化(声明和定义的过程一起完成) 在python中, 每一个变量在内存中创建,我们可以通过变量来查看内存中...

Django Rest framework频率原理与限制

Django Rest framework频率原理与限制

前言 开发平台的API接口调用需要限制其频率,以节约服务器资源和避免恶意的频繁调用. DRF就为我们提供了一些频率限制的方法. DRF中的版本、认证、权限、频率组件的源码是一个流程,且...

Python实现迭代时使用索引的方法示例

本文实例讲述了Python实现迭代时使用索引的方法。分享给大家供大家参考,具体如下: 索引迭代 Python中,迭代永远是取出元素本身,而非元素的索引。 对于有序集合,元素确实是有索引的...

python+openCV调用摄像头拍摄和处理图片的实现

在深度学习过程中想做手势识别相关应用,需要大量采集手势图片进行训练,作为一个懒人当然希望飞快的连续采集图片并且采集到的图片就已经被处理成统一格式的啦。。于是使用python+openCV...