PyTorch的自适应池化Adaptive Pooling实例

yipeiwu_com6年前Python基础

简介

自适应池化Adaptive Pooling是PyTorch含有的一种池化层,在PyTorch的中有六种形式:

自适应最大池化Adaptive Max Pooling:

torch.nn.AdaptiveMaxPool1d(output_size)
torch.nn.AdaptiveMaxPool2d(output_size)
torch.nn.AdaptiveMaxPool3d(output_size)

自适应平均池化Adaptive Average Pooling:

torch.nn.AdaptiveAvgPool1d(output_size)
torch.nn.AdaptiveAvgPool2d(output_size)
torch.nn.AdaptiveAvgPool3d(output_size)

具体可见官方文档

官方给出的例子:
>>> # target output size of 5x7
>>> m = nn.AdaptiveMaxPool2d((5,7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> output.size()
torch.Size([1, 64, 5, 7])

>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveMaxPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> output.size()
torch.Size([1, 64, 7, 7])

>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> output.size()
torch.Size([1, 64, 10, 7])

Adaptive Pooling特殊性在于,输出张量的大小都是给定的output_size output\_sizeoutput_size。例如输入张量大小为(1, 64, 8, 9),设定输出大小为(5,7),通过Adaptive Pooling层,可以得到大小为(1, 64, 5, 7)的张量。

原理

>>> inputsize = 9
>>> outputsize = 4

>>> input = torch.randn(1, 1, inputsize)
>>> input
tensor([[[ 1.5695, -0.4357, 1.5179, 0.9639, -0.4226, 0.5312, -0.5689, 0.4945, 0.1421]]])

>>> m1 = nn.AdaptiveMaxPool1d(outputsize)
>>> m2 = nn.MaxPool1d(kernel_size=math.ceil(inputsize / outputsize), stride=math.floor(inputsize / outputsize), padding=0)
>>> output1 = m1(input)
>>> output2 = m2(input)

>>> output1
tensor([[[1.5695, 1.5179, 0.5312, 0.4945]]]) torch.Size([1, 1, 4])
>>> output2
tensor([[[1.5695, 1.5179, 0.5312, 0.4945]]]) torch.Size([1, 1, 4])

通过实验发现:

下面是Adaptive Average Pooling的c++源码部分。

 template <typename scalar_t>
 static void adaptive_avg_pool2d_out_frame(
      scalar_t *input_p,
      scalar_t *output_p,
      int64_t sizeD,
      int64_t isizeH,
      int64_t isizeW,
      int64_t osizeH,
      int64_t osizeW,
      int64_t istrideD,
      int64_t istrideH,
      int64_t istrideW)
 {
  int64_t d;
 #pragma omp parallel for private(d)
  for (d = 0; d < sizeD; d++)
  {
   /* loop over output */
   int64_t oh, ow;
   for(oh = 0; oh < osizeH; oh++)
   {
    int istartH = start_index(oh, osizeH, isizeH);
    int iendH  = end_index(oh, osizeH, isizeH);
    int kH = iendH - istartH;

    for(ow = 0; ow < osizeW; ow++)
    {
     int istartW = start_index(ow, osizeW, isizeW);
     int iendW  = end_index(ow, osizeW, isizeW);
     int kW = iendW - istartW;

     /* local pointers */
     scalar_t *ip = input_p  + d*istrideD + istartH*istrideH + istartW*istrideW;
     scalar_t *op = output_p + d*osizeH*osizeW + oh*osizeW + ow;

     /* compute local average: */
     scalar_t sum = 0;
     int ih, iw;
     for(ih = 0; ih < kH; ih++)
     {
      for(iw = 0; iw < kW; iw++)
      {
       scalar_t val = *(ip + ih*istrideH + iw*istrideW);
       sum += val;
      }
     }

     /* set output to local average */
     *op = sum / kW / kH;
    }
   }
  }
}

以上这篇PyTorch的自适应池化Adaptive Pooling实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django模型修改及数据迁移实现解析

Migrations Django中对Model进行修改是件麻烦的事情,syncdb命令仅仅创建数据库里还没有的表,它并不对已存在的数据表进行同步修改,也不处理数据模型的删除。 如果你...

Python下使用Psyco模块优化运行速度

今天介绍下Psyco模块,Psyco模块可以使你的Python程序运行的像C语言一样快。 都说Python语言易用易学,但性能上跟一些编译语言(如C语言)比较要差不少,这里可以用C语言和...

Python实现截屏的函数

本文实例讲述了Python实现截屏的函数。分享给大家供大家参考。具体如下: 1.可指定保存目录. 2.截屏图片名字以时间为文件名 3.截屏图片存为JPG格式图片,比BMP小多的,一个10...

selenium+python实现自动登陆QQ邮箱并发送邮件功能

selenium+python实现自动登陆QQ邮箱并发送邮件功能

本期做一个selenium详细实例,会把我在元素定位中遇到的一些阻塞和经验分享给大家。 (浏览器为Chrome) (如果只需要最终的完整代码,请直接跳转到文章最后) 浏览器打开QQ邮箱...

python基础教程之Hello World!

Python命令行 假设你已经安装好了Python, 那么在Linux命令行输入: 复制代码 代码如下: $python 将直接进入python。然后在命令行提示符>>&g...