Tensorflow的常用矩阵生成方式

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧!

#全0和全1矩阵

v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") 

v2 = tf.Variable(tf.ones([10,5]), name="v2") 
 
#填充单值矩阵 
v3 = tf.Variable(tf.fill([2,3], 9)) 

 
#常量矩阵 
v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) 
v4_2 = tf.constant(-1.0, shape=[2, 3]) 


# 和v4_1形状一样的全1或全0矩阵

v5_1=tf.ones_like(v4_1)

v5_2=tf.zeros_like(v4_1) 


#生成等差数列 
v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64 
v7_1 = tf.range(10, 20, 3)#just int32 
 
#生成各种随机数据矩阵 

#平均分布

v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1")) 
#正态分布

v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2")) 

#正态分布,但是去掉2sigma外的数字

v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3")) 

#把这3个行重排列
v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5") 

以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据

存取方式是:

np.save("v1.npy",sess.run(v1))#numpy save v1 as file 
test_a = np.load("v1.npy") 
print test_a[1,2] 

这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现查找字符串数组最长公共前缀示例

本文实例讲述了Python实现查找字符串数组最长公共前缀。分享给大家供大家参考,具体如下: 编写一个函数来查找字符串数组中的最长公共前缀。 class Solution: def...

Python单链表简单实现代码

本文实例讲述了Python单链表简单实现代码。分享给大家供大家参考,具体如下: 用Python模拟一下单链表,比较简单,初学者可以参考参考 #coding:utf-8 class N...

详解Python Matplot中文显示完美解决方案

详解Python Matplot中文显示完美解决方案

原因与现象 Matplot是一个功能强大的Python图表绘制库,很遗憾目前版本自带的字体库中并不支持中文字体。所以如果在绘制内容中需要显示中文,那么就会显示为方格字符。 解决办法...

局域网内python socket实现windows与linux间的消息传送

有个需求,就是在windows上看见一篇介绍linux相关的文章,想在局域网内的另外一台linux电脑上尝试一下, 于是就需要把该网页链接发送给linux,不想一点一点敲链接,又苦于没有...

python用pandas数据加载、存储与文件格式的实例

数据加载、存储与文件格式 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数。其中read_csv和read_talbe用得最多 pandas中的解析函数: 函数...