pytorch1.0中torch.nn.Conv2d用法详解

yipeiwu_com6年前Python基础

Conv2d的简单使用

torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样。

在 torch 中,Conv2d 有几个基本的参数,分别是

in_channels 输入图像的深度

out_channels 输出图像的深度

kernel_size 卷积核大小,正方形卷积只为单个数字

stride 卷积步长,默认为1

padding 卷积是否造成尺寸丢失,1为不丢失

与tensorflow不一样的是,pytorch中的使用更加清晰化,我们可以使用这种方法定义输入与输出图像的深度并同时指定使用的卷积核的大小。

而我们的输入则由经由 Conv2d 定义的参数传入,如下所示:

# 定义一个输入深度为1,输出为6,卷积核大小为 3*3 的 conv1 变量
self.conv1 = nn.Conv2d(1, 6, 3)
# 传入原始输入x,以获得长宽与x相当,深度为6的卷积部分
x = self.conv1(x)

要注意的是,Conv2d中所需要的输入顺序为

batchsize, nChannels, Height, Width

其他的简单使用

同样的,与 Conv2d 类似的函数还有很多,类似 max_pool2d、relu等等,他们的使用方法与 Conv2d 极为类似,如下所示:

# relu函数的使用
F.relu(self.conv1(x))
# 池化函数的使用
F.max_pool2d(F.relu(self.conv2(x)), 2)

以上这篇pytorch1.0中torch.nn.Conv2d用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python opencv对图像进行旋转且不裁剪图片的实现方法

最近在做深度学习时需要用到图像处理相关的操作,在度娘上找到的图片旋转方法千篇一律,旋转完成的图片都不是原始大小,很苦恼,于是google到歪果仁的网站扒拉了一个方法,亲测好用,再次嫌弃天...

Python学习笔记之列表和成员运算符及列表相关方法详解

本文实例讲述了Python学习笔记之列表和成员运算符及列表相关方法。分享给大家供大家参考,具体如下: 列表和成员运算符 列表可以包含我们到目前为止所学的任何数据类型并且可以混合到一起。...

在Python的Django框架中创建和使用模版

如何使用模板系统 让我们深入研究模板系统,你将会明白它是如何工作的。但我们暂不打算将它与先前创建的视图结合在一起,因为我们现在的目的是了解它是如何独立工作的。 。 (换言之, 通常你会将...

python通过字典dict判断指定键值是否存在的方法

本文实例讲述了python通过字典dict判断指定键值是否存在的方法。分享给大家供大家参考。具体如下: python中有两种方法可以判断指定的键值是否存在,一种是通过字典对象的方法 ha...

如何基于Python获取图片的物理尺寸

如何基于Python获取图片的物理尺寸

这篇文章主要介绍了如何基于Python获取图片的物理尺寸,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 问题 如何获取图片的物理尺寸...