在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com5年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django数据库migrate失败的解决方法解析

django数据库migrate失败的解决方法解析

Django是一个MVC架构的web框架,其中,数据库就是“Module”。使用这种框架,我们不必写一条SQL语句,就可以完成对数据库的所有操作。在之前的Django版本中,我们像操作本...

对python自动生成接口测试的示例讲解

在python中Template可以将字符串的格式固定下来,重复利用。 同一套测试框架为了可以复用,所以我们可以将用例部分做参数化,然后运用到各个项目中。 代码如下: coding=...

Django 查询数据库并返回页面的例子

views.py 视图文件 message = None all_message = UserMessage.objects.filter(name='测试2') if...

Python用sndhdr模块识别音频格式详解

本文主要介绍了Python编程中,用sndhdr模块识别音频格式的相关内容,具体如下。 sndhdr模块 功能描述:sndhdr模块提供检测音频类型的接口。 唯一一个API sndhdr...

基于多进程中APScheduler重复运行的解决方法

问题 在一个python web应用中需要定时执行一些任务,所以用了APScheduler这个库。又因为是用flask这个web框架,所以用了flask-apscheduler这个插件(...