np.random.seed() 的使用详解

yipeiwu_com6年前Python基础

在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

我们带着2个问题来进行下列实验

  1. np.random.seed()是否一直有效
  2. np.random.seed(Argument)的参数作用?

例子1

import numpy as np
 
if __name__ == '__main__':
 i = 0
 while (i < 6):
  if (i < 3):
   np.random.seed(0)
   print(np.random.randn(1, 5))
  else:
   print(np.random.randn(1, 5))
   pass
  i += 1
 
 print("-------------------")
 i = 0
 while (i < 2):
  print(np.random.randn(1, 5))
  i += 1
 print(np.random.randn(2, 5))
 
 print("---------重置----------")
 np.random.seed(0)
 i = 0
 while (i < 8):
  print(np.random.randn(1, 5))
  i += 1

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。

例子2,随机数种子参数的作用

import numpy as np
 
if __name__ == '__main__':
 i = 0
 np.random.seed(0)
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1
 i = 0
 print("---------------------")
 np.random.seed(1)
 i = 0
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。

所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何通过雪花算法用Python实现一个简单的发号器

如何通过雪花算法用Python实现一个简单的发号器

实现一个简单的发号器 根据snowflake算法的原理实现一个简单的发号器,产生不重复、自增的id。 1.snowflake算法的简单描述 这里的snowflake算法是用二进制的...

Python语言进阶知识点总结

Python语言进阶知识点总结

数据结构和算法 算法:解决问题的方法和步骤 评价算法的好坏:渐近时间复杂度和渐近空间复杂度。 渐近时间复杂度的大O标记: - 常量时间复杂度 - 布隆过滤器 / 哈希存储 - 对数时间复...

利用Python批量压缩png方法实例(支持过滤个别文件与文件夹)

前言 本文主要给大家介绍的关于Python批量压缩png的相关资料,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 1.需求 为什么会有这个需求?是因为游戏的资源大多是...

解决python 自动安装缺少模块的问题

场景 我写个脚本给别人用,但是这个脚本中包含了一个第三方库。 当然对方执行的时候就会提示缺少,能否让python自动安装呢? 解决 try: import requests exc...

Python绘制二维曲线的日常应用详解

Python绘制二维曲线的日常应用详解

使用Python绘制出类似Excel或者MATLAB的曲线还是比较容易就能够实现的,需要用到的额外库有两个,numpy和matplotlib。使用这两个模块实现的曲线绘制其实在一定程度上...