关于pytorch中全连接神经网络搭建两种模式详解

yipeiwu_com5年前Python基础

pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式:

import torch
import torch.nn as nn

first:

class NN(nn.Module):
 def __init__(self):
  super(NN,self).__init__()
  self.model=nn.Sequential(
   nn.Linear(30,40),
   nn.ReLU(),
   nn.Linear(40,60),
   nn.Tanh(),
   nn.Linear(60,10),
   nn.Softmax()
  )
  self.model[0].weight.data.uniform_(-3e-3, 3e-3)
  self.model[0].bias.data.uniform(-1,1)
 def forward(self,states):
  return self.model(states)

这一种是将整个网络写在一个Sequential中,网络参数设置可以在网络搭建好后单独设置:self.model[0].weight.data.uniform_(-3e-3,3e-3),这是设置第一个linear的权重是(-3e-3,3e-3)之间的均匀分布,bias是-1至1之间的均匀分布。

second:

class NN1(nn.Module):
 def __init__(self):
  super(NN1,self).__init__()
  self.Linear1=nn.Linear(30,40)
  self.Linear1.weight.data.fill_(-0.1)
  #self.Linear1.weight.data.uniform_(-3e-3,3e-3)
  self.Linear1.bias.data.fill_(-0.1)
  self.layer1=nn.Sequential(self.Linear1,nn.ReLU())

  self.Linear2=nn.Linear(40,60)
  self.layer2=nn.Sequential(self.Linear2,nn.Tanh())

  self.Linear3=nn.Linear(60,10)
  self.layer3=nn.Sequential(self.Linear3,nn.Softmax())


 def forward(self,states):
  return self.model(states)

网络参数的设置可以在定义完线性层之后直接设置如这里对于第一个线性层是这样设置:self.Linear1.weight.data.fill_(-0.1),self.Linear1.bias.data.fill_(-0.1)。

你可以看一下这样定义完的参数的效果:

Net=NN()
print("0:",Net.model[0])
print("weight:",type(Net.model[0].weight))
print("weight:",type(Net.model[0].weight.data))
print("bias",Net.model[0].bias.data)
print('1:',Net.model[1])
#print("weight:",Net.model[1].weight.data)
print('2:',Net.model[2])
print('3:',Net.model[3])
#print(Net.model[-1])

Net1=NN1()
print(Net1.Linear1.weight.data)

输出:

0: Linear (30 -> 40)
weight: <class 'torch.nn.parameter.Parameter'>
weight: <class 'torch.FloatTensor'>
bias 
-0.6287
-0.6573
-0.0452
 0.9594
-0.7477
 0.1363
-0.1594
-0.1586
 0.0360
 0.7375
 0.2501
-0.1371
 0.8359
-0.9684
-0.3886
 0.7200
-0.3906
 0.4911
 0.8081
-0.5449
 0.9872
 0.2004
 0.0969
-0.9712
 0.0873
 0.4562
-0.4857
-0.6013
 0.1651
 0.3315
-0.7033
-0.7440
 0.6487
 0.9802
-0.5977
 0.3245
 0.7563
 0.5596
 0.2303
-0.3836
[torch.FloatTensor of size 40]

1: ReLU ()
2: Linear (40 -> 60)
3: Tanh ()

-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
   ...    ⋱    ...   
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
[torch.FloatTensor of size 40x30]


Process finished with exit code 0

这里要注意self.Linear1.weight的类型是网络的parameter。而self.Linear1.weight.data是FloatTensor。

以上这篇关于pytorch中全连接神经网络搭建两种模式详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Laravel+Dingo/Api 自定义响应的实现

在最近的开发开发项目中,我使用了Dingo/Api这个第三方Api库。 Dingo是个很强大的Api库, 但在开发的过程中,需要自定义响应字段。 刚开始使用Ding/Api时,返回如下...

python 统计列表中不同元素的数量方法

刚刚上网搜了一下如何用python统计列表中不同元素的数量,发现很少,找了半天。我自己来写一种方法。 代码如下 list=[1,1,2,2,3] print(list) set1=s...

Python基类函数的重载与调用实例分析

本文实例讲述了Python基类函数的重载与调用方法。分享给大家供大家参考。具体分析如下: 刚接触Python语言的时间不长,对于这个语言的很多特性并不是很了解,有很多用法都是还不知道。今...

简单谈谈python中的lambda表达式

最近在coding时发现使用lambda还是有诸多优点的,很多时候代码更整洁,更pythonic,所以在此简单总结一下 1.lambda是什么 举个简单的例子: func = lam...

influx+grafana自定义python采集数据和一些坑的总结

influx+grafana自定义python采集数据和一些坑的总结

先上网卡数据采集脚本,这个基本上是最大的坑,因为一些数据的类型不正确会导致no datapoint的错误,真是令人抓狂,注意其中几个key的值必须是int或者float类型,如果你不慎写...