Pytorch之finetune使用详解

yipeiwu_com6年前Python基础

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:

1.固定参数

  for name, child in model.named_children():
    for param in child.parameters():
      param.requires_grad = False

后,只传入 需要反传的参数,否则会报错

filter(lambda param: param.requires_grad, model.parameters())

2.调低学习率,加快衰减

finetune是在预训练模型上进行微调,学习速率不能太大。

目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。

直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001

要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000

3. 固定bn或取消dropout:

batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值

def freeze_bn(self):
  for layer in self.modules():
    if isinstance(layer, nn.BatchNorm2d):
      layer.eval()

训练时,model.train()会修改模式,freeze_zn()应该在这里后面

4.过滤参数

训练时,对于优化器,应该只传入需要改变的参数,否则会报错

filter(lambda p: p.requires_grad, model.parameters())

以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch .detach() .detach_() 和 .data用于切断反向传播的实现

当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整;或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数...

python的类变量和成员变量用法实例教程

本文实例形式讲解了python的类变量和成员变量用法,对于Python程序设计有一定的参考价值。分享给大家供大家参考。具体如下: 先看看下面这段代码: class TestClass...

python中关于日期时间处理的问答集锦

如何在安装setuptools模块时不生成egg压缩包而是源码     Q:如何在安装setuptools模块时不生成egg压缩包而是源码,这样有时可以修改...

Python合并多个Excel数据的方法

Python合并多个Excel数据的方法

安装模块 1、找到对应的模块   http://www.python-excel.org/ 2、用pip install 安装 pip install xlrd p...

Python3 模块、包调用&路径详解

如下所示: ''' 以下代码均为讲解,不能实际操作 ''' ''' 博客园 Infi_chu ''' ''' 模块的优点: 1.高可维护性 2.可以大大减少编写的代码量 模块一共有...